Czechoslovak Mathematical Journal, Vol. 74, No. 2, pp. 429-436, 2024


Class groups of large ranks in biquadratic fields

Mahesh Kumar Ram

Received August 4, 2023.   Published online April 15, 2024.

Abstract:  For any integer $n>1$, we provide a parametric family of biquadratic fields with class groups having $n$-rank at least 2. Moreover, in some cases, the $n$-rank is bigger than 4.
Keywords:  ideal class group; biquadratic field
Classification MSC:  11R11, 11R29


References:
[1] N. C. Ankeny, S. Chowla: On the divisibility of the class number of quadratic fields. Pac. J. Math. 5 (1955), 321-324. DOI 10.2140/pjm.1955.5.321 | MR 0085301 | Zbl 0065.02402
[2] K. Chakraborty, A. Hoque, Y. Kishi, P. P. Pandey: Divisibility of the class numbers of imaginary quadratic fields. J. Number Theory 185 (2018), 339-348. DOI 10.1016/j.jnt.2017.09.007 | MR 3734353 | Zbl 1431.11119
[3] H. Cohen, H. W. Lenstra, Jr.: Heuristics on class groups of number fields. Number Theory Lecture Notes in Mathematics 1068. Springer, Berlin (1984), 33-62. DOI 10.1007/BFb0099440 | MR 0756082 | Zbl 0558.12002
[4] H. Cohen, J. Martinet: Heuristic study of the class groups of number fields. J. Reine Angew. Math. 404 (1990), 39-76. (In French.) DOI 10.1515/crll.1990.404.39 | MR 1037430 | Zbl 0699.12016
[5] J. Gillibert, P. Gillibert: Galois covers of $\Bbb{P}^1$ and number fields with large class groups. Int. J. Number Theory 18 (2022), 1261-1288. DOI 10.1142/S1793042122500646 | MR 4433140 | Zbl 1502.11112
[6] J. Gillibert, A. Levin: A geometric approach to large class groups: A survey. Class Groups of Number Fields and Related Topics Springer, Singapore (2020), 1-15. DOI 10.1007/978-981-15-1514-9_1 | MR 4292539 | Zbl 1444.11218
[7] H. Ichimura: Note on the class numbers of certain real quadratic fields. Abh. Math. Sem. Univ. Hamb. 73 (2003), 281-288. DOI 10.1007/BF02941283 | MR 2028521 | Zbl 1050.11090
[8] S. R. Louboutin: On the divisibility of the class number of imaginary quadratic number fields. Proc. Am. Math. Soc. 137 (2009), 4025-4028. DOI 10.1090/S0002-9939-09-10021-7 | MR 2538563 | Zbl 1269.11111
[9] M. Mishra, R. Schoof, L. C. Washington: Class groups of real cyclotomic fields. Monatsh. Math. 195 (2021), 489-496. DOI 10.1007/s00605-020-01499-0 | MR 4270784 | Zbl 1472.11277
[10] M. R. Murty: Exponents of class groups of quadratic fields. Topics in Number Theory Mathematics and its Applications 467. Kluwer Academic, Dordrecht (1999), 229-239. DOI 10.1007/978-1-4613-0305-3_15 | MR 1691322 | Zbl 0993.11059
[11] T. Nagell: Über die Klassenzahl imaginär-quadratischer Zahlkörper. Abh. Math. Semin. Univ. Hamb. 1 (1922), 140-150. (In German.) DOI 10.1007/BF02940586 | MR 3069394 | JFM 48.0170.03
[12] S. Nakano: On ideal class groups of algebraic number fields. J. Reine Angew. Math. 358 (1985), 61-75. DOI 10.1515/crll.1985.358.61 | MR 0797674 | Zbl 0559.12004
[13] R. J. Schoof: Class group of complex quadratic fields. Math. Comput. 41 (1983), 295-302. DOI 10.2307/2007782 | MR 0701640 | Zbl 0516.12002
[14] J. H. Silverman: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics 106. Springer, Dordrecht (2009). DOI 10.1007/978-0-387-09494-6 | MR 2514094 | Zbl 1194.11005
[15] K. Soundararajan: Divisibility of class numbers of imaginary quadratic fields. J. Lond. Math. Soc., II. Ser. 61 (2000), 681-690. DOI 10.1112/S0024610700008887 | MR 1766097 | Zbl 1018.11054

Affiliations:   Mahesh Kumar Ram, National Institute of Science Education and Research, Jatni, Bhubaneswar, Odisha-752050, India, e-mail: maheshkumarram621@gmail.com


 
PDF available at: