Czechoslovak Mathematical Journal, Vol. 74, No. 4, pp. 1059-1082, 2024


Characterization of automorphisms of Radford's biproduct of Hopf group-coalgebra

Xing Wang, Daowei Lu, Ding-Guo Wang

Received October 10, 2023.   Published online October 21, 2024.

Abstract:  We study certain subgroups of the Hopf group-coalgebra automorphism group of Radford's $\pi$-biproduct. Firstly, we discuss the endomorphism monoid ${\rm End}_{\pi\text{-Hopf}}(A\times H, p)$ and the automorphism group ${\rm Aut}_{\pi\text{-Hopf}}(A\times H, p)$ of Radford's $\pi$-biproduct $A \times H =\{A \times H_\alpha\}_{\alpha\in\pi}$, and prove that the automorphism has a factorization closely related to the factors $A$ and $H=\{H_\alpha\}_{\alpha\in\pi}$. What's more interesting is that a pair of maps $(F_L,F_R)$ can be used to describe a family of mappings $F=\{F_\alpha\}_{\alpha\in\pi}$. Secondly, we consider the relationship between the automorphism group ${\rm Aut}_{\pi\text{-Hopf}}(A\times H, p)$ and the automorphism group ${\rm Aut}_{\pi\text-\mathcal{Y}\mathcal{D}\text{-Hopf}}(A)$ of $A$, and a normal subgroup of the automorphism group ${\rm Aut}_{\pi\text{-Hopf}}(A\times H, p)$. Finally, we specifically describe the automorphism group of an example.
Keywords:  Hopf group-coalgebra; Radford's $\pi$-biproduct; automorphism
Classification MSC:  16T05, 16U20


References:
[1] N. Andruskiewitsch, H.-J. Schneider: On the classification of finite-dimensional pointed Hopf algebras. Ann. Math. (2) 171 (2010), 375-417. DOI 10.4007/annals.2010.171.375 | MR 2630042 | Zbl 1208.16028
[2] D. Bulacu, E. Nauwelaerts: Radford's biproduct for quasi-Hopf algebras and bosonization. J. Pure Appl. Algebra 174 (2002), 1-42. DOI 10.1016/S0022-4049(02)00014-2 | MR 1924081 | Zbl 1014.16036
[3] L. Delvaux: Multiplier Hopf algebras in categories and the biproduct construction. Algebr. Represent. Theory 10 (2007), 533-554. DOI 10.1007/s10468-007-9053-6 | MR 2350225 | Zbl 1163.16026
[4] S. Guo, S. Wang: Crossed products of weak Hopf group coalgebras. Acta Math. Sci., Ser. A, Chin. Ed. 34 (2014), 327-337. (In Chinese.) MR 3186397 | Zbl 1313.16066
[5] T. Ma, Y. Song: Hopf $\pi$-crossed biproduct and related coquasitriangular structures. Rend. Semin. Mat. Univ. Padova 130 (2013), 127-145. DOI 10.4171/rsmup/130-3 | MR 3148634 | Zbl 1296.16034
[6] D. E. Radford: The structure of Hopf algebras with a projection. J. Algebra 92 (1985), 322-347. DOI 10.1016/0021-8693(85)90124-3 | MR 0778452 | Zbl 0549.16003
[7] D. E. Radford: On automorphisms of biproducts. Commun. Algebra 45 (2017), 1365-1398. DOI 10.1080/00927872.2016.1172599 | MR 3576664 | Zbl 1381.16035
[8] B.-L. Shen, L. Liu: Radford's biproducts for Hopf group-coalgebras and its quasitriangular structures. Abh. Math. Semin. Univ. Hamb. 83 (2013), 129-146. DOI 10.1007/s12188-013-0079-x | MR 3055826 | Zbl 1270.16029
[9] B.-L. Shen, S.-H. Wang: Blattner-Cohen-Montgomery's duality theorem for (weak) group smash products. Commun. Algebra 36 (2008), 2387-2409. DOI 10.1080/00927870701509495 | MR 2418392 | Zbl 1153.16039
[10] M. E. Sweedler: Hopf Algebras. Mathematics Lecture Note Series. W. A. Benjamin, New York (1969). MR 0252485 | Zbl 0194.32901
[11] V. Turaev: Homotopy field theory in dimension 3 and crossed group-categories. Available at https://arxiv.org/abs/math/0005291 (2000), 76 pages. DOI 10.48550/arXiv.math/0005291
[12] V. Turaev: Crossed group-categories. Arab. J. Sci. Eng., Sect. C, Theme Issues 33 (2008), 483-503. MR 2500054 | Zbl 1185.18009
[13] A. Van Daele, S. Wang: New braided crossed categories and Drinfel'd quantum double for weak Hopf group coalgebras. Commun. Algebra 36 (2008), 2341-2386. DOI 10.1080/00927870701509420 | MR 2418391 | Zbl 1154.16031
[14] A. Virelizier: Hopf group-coalgebras. J. Pure Appl. Algebra 171 (2002), 75-122. DOI 10.1016/S0022-4049(01)00125-6 | MR 1903398 | Zbl 1011.16023
[15] A. Virelizier: Graded quantum groups and quasitriangular Hopf group-coalgebras. Commun. Algebra 33 (2005), 3029-3050. DOI 10.1081/AGB-200066110 | MR 2175378 | Zbl 1084.16034
[16] S.-H. Wang: Group twisted smash products and Doi-Hopf modules for $T$-coalgebras. Commun. Algebra 32 (2004), 3417-3436. DOI 10.1081/AGB-120039402 | MR 2097469 | Zbl 1073.16034
[17] S. Wang, Z. Jiao, W. Zhao: Hopf algebra structures on crossed products. Commun. Algebra 26 (1998), 1293-1303. DOI 10.1080/00927879808826199 | MR 1612240 | Zbl 0898.16028
[18] M. Zunino: Double construction for crossed Hopf coalgebras. J. Algebra 278 (2004), 43-75. DOI 10.1016/j.jalgebra.2004.03.019 | MR 2068066 | Zbl 1058.16035
[19] M. Zunino: Yetter-Drinfeld modules for crossed structures. J. Pure Appl. Algebra 193 (2004), 313-343. DOI 10.1016/j.jpaa.2004.02.014 | MR 2076391 | Zbl 1075.16019

Affiliations:   Xing Wang (corresponding author), Daowei Lu, School of Mathematics and Big Data, Jining University, 1 Xingtan Road, Qufu 273155, Shandong Province, P. R. China, e-mail: xwang17@126.com, ludaowei620@126.com; Ding-Guo Wang, School of Mathematical Sciences, Qufu Normal University, 57 Jingxuan West Road, Qufu 273165, Shandong Province, P. R. China, e-mail: dingguo95@126.com


 
PDF available at: