Czechoslovak Mathematical Journal, first online, pp. 1-9


On the duality of Dunford-Pettis operators on Banach lattices

Belmesnaoui Aqzzouz, Aziz Elbour, Othman Aboutafail

Received June 27, 2011.   Published online December 18, 2024.

Abstract:  We establish sufficient conditions for the duality of regular Dunford-Pettis operators on Banach lattices and necessary conditions for the duality condition "if the adjoint of a (positive) operator is Dunford-Pettis, then the operator itself is". In particular, we show that if each operator $T\colon E\rightarrow F$ from a Banach lattice $E$ with an order continuous norm to another Banach lattice $F$ is Dunford-Pettis whenever its adjoint $T^{\prime}\colon F^{\prime}\rightarrow E^{\prime}$ is Dunford-Pettis, then $E$ has the Schur property or $F$ is a KB-space. As consequences, we deduce a characterization of the Schur property (and KB-spaces).
Keywords:  Dunford-Pettis operator; order continuous norm; positive Schur property; KB-space
Classification MSC:  46A40, 46B40, 46B42

PDF available at:  Institute of Mathematics CAS

References:
[1] C. D. Aliprantis, O. Burkinshaw: Positive Operators. Springer, Berlin (2006). DOI 10.1007/978-1-4020-5008-4 | MR 2262133 | Zbl 1098.47001
[2] B. Aqzzouz, K. Bourass, A. Elbour: Some generalizations on positive Dunford-Pettis operators. Result. Math. 54 (2009), 207-218. DOI 10.1007/s00025-009-0372-2 | MR 2534444 | Zbl 1191.47051
[3] B. Aqzzouz, A. Elbour, A. W. Wickstead: Positive almost Dunford-Pettis operators and their duality. Positivity 15 (2011), 185-197. DOI 10.1007/s11117-010-0050-3 | MR 2803812 | Zbl 1232.46019
[4] B. Aqzzouz, R. Nouira, L. Zraoula: On the duality problem of positive Dunford-Pettis operators on Banach lattices. Rend. Circ. Mat. Palermo (2) 57 (2008), 287-294. DOI 10.1007/s12215-008-0021-8 | MR 2452672 | Zbl 1166.47036
[5] N. J. Kalton, P. Saab: Ideal properties of regular operators between Banach lattices. Ill. J. Math. 29 (1985), 382-400. DOI 10.1215/ijm/1256045630 | MR 0786728 | Zbl 0568.47030
[6] P. Meyer-Nieberg: Banach Lattices. Universitext. Springer, Berlin (1991). DOI 10.1007/978-3-642-76724-1 | MR 1128093 | Zbl 0743.46015
[7] A. W. Wickstead: Converses for the Dodds-Fremlin and Kalton-Saab theorems. Math. Proc. Camb. Philos. Soc. 120 (1996), 175-179. DOI 10.1017/S0305004100074752 | MR 1373356 | Zbl 0872.47018
[8] W. Wnuk: Banach spaces with properties of the Schur type - A survey. Conf. Semin. Mat. Univ. Bari 249 (1993), 25 pages. MR 1230964 | Zbl 0812.46010
[9] A. C. Zaanen: Riesz Spaces II. North-Holland Mathematical Library 30. North-Holland, Amsterdam (1983). DOI 10.1016/s0924-6509(08)x7015-1 | MR 0704021 | Zbl 0519.46001

Affiliations:   Belmesnaoui Aqzzouz (corresponding author), Université Mohammed V-Souissi, Faculté des Sciences Economiques, Juridiques et Sociales, Département d'Economie, B.P. 5295, SalaAljadida, Morocco, e-mail: baqzzouz@hotmail.com; Aziz Elbour, Department of Mathematics, Faculty of Sciences and Technologies, Moulay Ismail University of Meknes, 52000 Errachidia, Morocco, e-mail: azizelbour@hotmail.com; Othman Aboutafail, Engineering Sciences Laboratory, ENSA, Université Ibn Tofail, B.P. 14000, Kenitra, Morocco, e-mail: moulayothman.aboutafail@uit.ac.ma


 
PDF available at: