Czechoslovak Mathematical Journal, first online, pp. 1-34


On general Dedekind sums

Nianliang Wang, Shigeru Kanemitsu, Yoshio Tanigawa

Received May 8, 2024.   Published online April 11, 2025.

Abstract:  As a far generalization of the Dedekind sum with the product of periodic Bernoulli polynomials, Mikolás introduced the Dedekind type sum $\mathcal{M}_c^{a,b}(w,z)$ with the product of the Hurwitz zeta-functions $\zeta(s,x)$, $0<x\le1$. We adopt the motivation suggested by Mikolás that the Dedekind sum is a generalized inner product in the second variable. The Hurwitz zeta-function has a simple pole at $s=1$ and cannot assume the value $x=0$ while its counterpart, the Lerch zeta-function $\ell_s(x)=\ell(s,x)$, is more tractable and we study the Dedekind type sum $\mathcal{L}_c^{a,b}(w,z)$ with the product of the Lerch zeta-functions. We establish a striking identity between these Dedekind type sums to the effect that $\mathcal{M}_c^{a,b}(w,z)$ with a correction term is a constant multiple of $\mathcal{L}_c^{a,b}(w,z)$ - the base change formula. This implies a new expression for the ordinary Dedekind sum in terms of the one with Apostol's generalized Bernoulli polynomial. In another direction, by letting the second variables vary independently with first variables fixed as $s. s+1$, we may elucidate the Hecke correspondence in the previous derivations of the general eta transformation formula. We can also establish many interesting properties of $\mathcal{L}_c^{a,b}$ which supplement those of $\mathcal{M}_c^{a,b}$. Moreover, we show that $\mathcal{L}_c^{1,b}$ also appears in the pseudo-transformation formula for non-modular functions.
Keywords:  Dedekind sum; Hurwitz zeta-function; Lerch zeta-function; vector space structure; generalized inner product
Classification MSC:  11L07, 11L10, 11M35, 11M36

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] T. M. Apostol: Generalized Dedekind sums and the transformation formulae of certain Lambert series. Duke Math. J. 17 (1950), 147-157. DOI 10.1215/S0012-7094-50-01716-9 | MR 0034781 | Zbl 0039.03801
[2] T. M. Apostol: On the Lerch zeta function. Pac. J. Math. 1 (1951), 161-167. DOI 10.2140/pjm.1951.1.161  | MR 0043843 | Zbl 0043.07103
[3] T. M. Apostol: Addendum to 'On the Lerch zeta function's'. Pac. J. Math. 2 (1952), 10. DOI 10.2140/pjm.1952.2.10 | MR 0046378
[4] T. M. Apostol: A short proof of Shô Iseki's functional equation. Proc. Am. Math. Soc. 15 (1964), 618-622. DOI 10.1090/S0002-9939-1964-0164942-5 | MR 0164942 | Zbl 0163.29301
[5] T. M. Apostol: Modular Functions and Dirichlet Series in Number Theory. Graduate Texts in Mathematics 41. Springer, New York (1976). DOI 10.1007/978-1-4612-0999-7 | MR 0422157 | Zbl 0332.10017
[6] N. Asano: Report on Multiple Zeta-Functions and Dedekind Sums: Masters Thesis. Nagoya University, Nagoya (2003).
[7] K. Chakraborty, S. Kanemitsu, T. Kuzumaki: Seeing the invisible: Around generalized Kubert functions. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 47 (2018), 185-195. MR 3849202
[8] K. Chakraborty, S. Kanemitsu, T. Kuzumaki: Modular Relations and Parity in Number Theory. Infosys Science Foundation Series in Mathematical Sciences. Springer, Singapore (2025).
[9] R. Chapman: Limit formulas for non-modular Eisenstein series. J. Comb. Number Theory 1 (2009), 127-132. MR 2663649 | Zbl 1242.11066
[10] R. Dedekind: Erläuterungen zu zwei Fragmenten von Riemann. Bernhard Riemanns gesammelte mathematische Werke und wissenschaftlichen Nachlass B. G. Teubner, Leipzig (1892), 466-478. (In German.) JFM 24.0021.04
[11] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi: Higher Transcendental Functions. Vol. I. McGraw-Hill, New York (1953). MR 0058756 | Zbl 0051.30303
[12] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi: Higher Transcendental Functions. Vol. II. McGraw-Hill, New York (1953). MR 0058756 | Zbl 0052.29502
[13] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi: Higher Transcendental Functions. Vol. III. McGraw-Hill, New York (1955). MR 0066496 | Zbl 0064.06302
[14] O. Espinosa, V. H. Moll: On some integrals involving the Hurwitz zeta-function. I. Ramanujan J. 6 (2002), 159-188. DOI 10.1023/A:1015706300169 | MR 1908196 | Zbl 1019.33001
[15] O. Espinosa, V. H. Moll: On some integrals involving the Hurwitz zeta-function. II. Ramanujan J. 6 (2002), 449-468. DOI 10.1023/A:1021171500736 | MR 2125010 | Zbl 1156.11333
[16] T. Estermann: On the representation of a number as the sum of two products. Proc. Lond. Math. Soc. (2) 31 (1930), 123-133. DOI 10.1112/jlms/s1-5.2.131 | MR 1577452 | JFM 56.0174.02
[17] L. J. Goldstein, P. de la Torre: On the transformation formula of log $\eta(\tau)$. Duke Math. J. 41 (1974), 291-297. DOI 10.1215/S0012-7094-74-04132-5 | MR 0342471 | Zbl 0285.10017
[18] T. Hiramatsu, Y. Mimura, T. Takada: Dedekind sums and transformation formulas. RIMS Kokyuroku 572 (1985), 151-175. MR 0862858 | Zbl 0639.10005
[19] S. Iseki: The transformation formula for the Dedekind modular function and related functional equations. Duke Math. J. 24 (1957), 653-662. DOI 10.1215/S0012-7094-57-02473-0 | MR 0091301 | Zbl 0093.25903
[20] S. Iseki: A proof of a functional equation related to the theory of partitions. Proc. Am. Math. Soc. 12 (1961), 502-505. DOI 10.1090/S0002-9939-1961-0125098-5 | MR 0125098 | Zbl 0107.26705
[21] M. Ishibashi: The value of the Estermann zeta functions at $s=0$. Acta Arith. 73 (1995), 357-361. DOI 10.4064/aa-73-4-357-361 | MR 1366040 | Zbl 0845.11034
[22] S. Kanemitsu: L'estro armonico del circolo di Euler-Gauss-Dirichlet-Riemann. J. Weinan Teachers Univ. 26 (2011), 3-22, 42. (In Chinese.) DOI 10.15924/j.cnki.1009-5128.2011.10.001
[23] S. Kanemitsu, T. Kuzumaki: Transformation formulas for Lambert series. Šiauliai Math. Semin. 4 (2009), 105-123. MR 2530201 | Zbl 1208.11062
[24] S. Kanemitsu, H. Tsukada: Vistas of Special Functions. World Scientific, Hackensack (2007). DOI 10.1142/6489 | MR 2352572 | Zbl 1161.33001
[25] S. Kanemitsu, H. Tsukada: Contributions to the Theory of Zeta-Functions: The Modular Relation Supremacy. Series on Number Theory and Its Applications 10. World Scientific, Hackensack (2014). DOI 10.1142/8711 | MR 3329611 | Zbl 1311.11003
[26] M. Knopp, S. Robins: Easy proofs of Riemann's functional equation for $\zeta(s)$ and of Lipschitz summation. Proc. Am. Math. Soc. 129 (2001), 1915-1922. DOI 10.1090/S0002-9939-01-06033-6 | MR 1825897 | Zbl 0972.11083
[27] S.-Y. Koyama, N. Kurokawa: Multiple Eisenstein series and multiple cotangent functions. J. Number Theory 128 (2008), 1769-1774. DOI 10.1016/j.jnt.2007.06.004 | MR 2419192 | Zbl 1168.11035
[28] N. Kurokawa: Limit values of Eisenstein series and multiple cotangent functions. J. Number Theory 128 (2008), 1775-1783. DOI 10.1016/j.jnt.2007.06.003 | MR 2419193 | Zbl 1168.11032
[29] S. Lang: Cyclotomic Fields. Graduate Texts in Mathematics 69. Springer, Berlin (1978). MR 0485768 | Zbl 0395.12005
[30] S. Lang: Cyclotomic Fields. II. Graduate Texts in Mathematics 59. Springer, Berlin (1980). MR 0566952 | Zbl 0435.12001
[31] A. Laurinčikas, R. Garunkštis: The Lerch Zeta-Function. Kluwer Academic, Dordrecht (2002). DOI 10.1007/978-94-017-6401-8 | MR 1979048 | Zbl 1028.11052
[32] H.-L. Li, M. Hashimoto, S. Kanemitsu: Examples of the Hurwitz transform. J. Math. Soc. Japan 61 (2009), 651-660. DOI 10.2969/jmsj/06130651 | MR 2552911 | Zbl 1231.11107
[33] H. Li, T. Kuzumaki, S. Kanemitsu: On zeta-functions and allied theta-functions. Advances Number Theory World Scientific, Singapore (2023). DOI 10.1142/9789811272608_0004 | MR 4619172
[34] H. Li, F. Li, N. Wang, S. Kanemitsu: Number Theory and Its Applications. II. World Scientific, Hackensack (2018). DOI 10.1142/10753 | MR 3753614 | Zbl 1440.11002
[35] H. Li, J. Ma, Y. Uramatsu: Multiplication formulas for Kubert functions. Front. Math. China 9 (2014), 101-109. DOI 10.1007/s11464-013-0348-0 | MR 3146558 | Zbl 1331.11002
[36] W. Li, H. Li, J. Mehta: Around the Lipschitz summation formula. Math. Probl. Eng. 2020 (2020), Article ID 5762823, 16 pages. DOI 10.1155/2020/5762823 | MR 4093324 | Zbl 1544.11066
[37] H. Maier: Cyclotomic polynomials whose orders contain many prime factors. Period. Math. Hung. 43 (2001), 155-164. DOI 10.1023/A:1015293917813 | MR 1830573 | Zbl 1062.11061
[38] C. Meyer: Über einige Anwendungen Dedekindscher Summen. J. Reine Angew. Math. 198 (1957), 143-203. (In German.) DOI 10.1515/crll.1957.198.143 | MR 0104643 | Zbl 0079.10303
[39] M. Mikolás: Mellinsche Transformation und Orthogonalität bei $\zeta(s,u)$: Verallgemeinerung der Riemannschen Funktionalgleichung von $\zeta(s)$. Acta Sci. Math. 17 (1956), 143-164. (In German.) MR 0089864 | Zbl 0073.06403
[40] M. Mikolás: On certain sums generating the Dedekind sums and their reciprocity laws. Pac. J. Math. 7 (1957), 1167-1178. DOI 10.2140/pjm.1957.7.1167 | MR 0091303 | Zbl 0081.04302
[41] M. Mikolás: Über gewisse Lambertsche Reihen. I: Verallgemeinerung der Modulfunktionen $\eta(\tau)$ und ihrer Dedekindschen Transformationsformel. Math. Z. 68 (1957), 100-110. (In German.) DOI 10.1007/BF01160334 | MR 0091302 | Zbl 0078.07003
[42] J. Milnor: On polylogarithms, Hurwitz zeta-functions, and the Kubert identities. Enseign. Math., II. Sér. 29 (1983), 281-322. MR 0719313 | Zbl 0557.10031
[43] H. Rademacher: Zur Theorie der Modulfunktionen. J. Reine Angew. Math. 167 (1932), 312-336. (In German.) DOI 10.1515/crll.1932.167.312 | MR 1581344 | Zbl 0003.21501
[44] H. Rademacher: Topics in Analytic Number Theory. Die Grundlehren der mathematischen Wissenschaften 169. Springer, Berlin (1973). DOI 10.1007/978-3-642-80615-5 | MR 0364103 | Zbl 0253.10002
[45] H. Rademacher, E. Grosswald: Dedekind Sums. The Carus Mathematical Monographs 16. The Mathematical Association of America, New York (1972). DOI 10.5948/UPO9781614440161 | MR 0357299 | Zbl 0251.10020
[46] B. Riemann: The Collected Works of Bernhard Riemann. Dover, New York (1953). Zbl 1369.01040
[47] J.-P. Serre: A Course in Arithmetic. Graduate Texts in Mathematics 7. Springer, New York (1973). DOI 10.1007/978-1-4684-9884-4 | MR 0344216 | Zbl 0256.12001
[48] H. M. Srivastava, J. Choi: Series Associated with the Zeta and Related Functions. Kluwer Academic, Dordrecht (2001). DOI 10.1007/978-94-015-9672-5 | MR 1849375 | Zbl 1014.33001
[49] H. M. Stark: Dirichlet's class number formula revisited. A Tribute to Emil Grosswald: Number Theory and Related Analysis Contemporary Mathematics 143. AMS, Providence (1993), 571-577. DOI 10.1090/conm/143 | MR 1210543 | Zbl 0804.11060
[50] E. C. Titchmarsh: On a series of Lambert's type. J. Lond. Math. Soc. 13 (1938), 248-252. DOI 10.1112/jlms/s1-13.4.248 | MR 1574972 | Zbl 0021.01102
[51] H. Walum: Multiplication formulae for periodic functions. Pac. J. Math. 149 (1991), 383-396. DOI 10.2140/pjm.1991.149.383 | MR 1105705 | Zbl 0736.11012
[52] A. Weil: Sur une formule classique. J. Math. Soc. Japan 20 (1968), 400-402. (In French.) DOI 10.2969/jmsj/02010400 | MR 0224556 | Zbl 0174.33902
[53] Y. Yamamoto: Dirichlet series with periodic coefficients. Algebraic Number Theory. Japan Society for the Promotion of Science, Tokyo (1977), 275-289. MR 0450213 | Zbl 0371.10028

Affiliations:   Nianliang Wang (corresponding author), School of Applied Mathematics and Computers, Institute of Applied Mathematics, Shangluo University, Shangluo, Shaanxi 726000, P. R. China, e-mail: wangnianliangshangluo@aliyun.com; Shigeru Kanemitsu, SUDA Research Institute, No. 1, Taiyang Road, Economic Development Zone, Sanmenxia, Henan, 472000, P. R. China, e-mail: omnikanemitsu@yahoo.com; Yoshio Tanigawa, 2-13-1 Nishizato-cho, Meito-ku, Nagoya 465-0084, Japan, e-mail: tanigawa@math.nagoya-u.ac.jp


 
PDF available at: