Czechoslovak Mathematical Journal, first online, pp. 1-16


The rings whose torsionfree modules have injective dimension at most one

Yusuf Alagöz, Zübeyir Türkoğlu

Received May 27, 2024.   Published online January 23, 2025.

Abstract:  The domains with torsion-free modules of injective dimension at most one have been examined by B. Olberding. A TF-projective module is one that is projective relative to all short exact sequences beginning with torsion-free modules. The rings, where each right ideal of $S$ is TF-projective, are precisely those rings whose torsionfree right modules have injective dimension at most one. The goal of this study is to comprehend the structure of the rings that B. Olberding recently studied. Along the way, we prove for a domain $S$, that if each ideal of $S$ is TF-projective, then $S$ is a Noetherian ring with $\dim(S)\leq1$. Specifically, we prove that for a commutative domain $S$, each ideal of $S$ is TF-projective if and only if $S$ is a Gorenstein Dedekind domain. A left $P$-coherent ring all of its TF-projective left $S$-modules are projective is precisely left PP ring. Furthermore, we demonstrate that any (cyclic) right $S$-module of $S$ is TF-projective if and only if $S$ is a QF-ring.
Keywords:  injective dimension; torsionfree module; TF-projective module; TF-hereditary ring
Classification MSC:  16D40, 16E10, 18G25

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] H. Bass: Injective dimension in Noetherian rings. Trans. Am. Math. Soc. 102 (1962), 18-29. DOI 10.1090/S0002-9947-1962-0138644-8 | MR 0138644 | Zbl 0126.06503
[2] F. Couchot: RD-flatness and RD-injectivity. Commun. Algebra 34 (2006), 3675-3689. DOI 10.1080/00927870600860817 | MR 2262377 | Zbl 1113.16010
[3] E. E. Enochs, O. M. G. Jenda: Relative Homological Algebra. de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). DOI 10.1515/9783110803662 | MR 1753146 | Zbl 0952.13001
[4] E. E. Enochs, O. M. G. Jenda, J. A. López-Ramos: The existence of Gorenstein flat covers. Math. Scand. 2004 (2004), 46-62. DOI 10.7146/math.scand.a-14429 | MR 2032335 | Zbl 1061.16003
[5] C. Faith: Algebra. II. Ring Theory. Grundlehren der mathematischen Wissenschaften 191. Springer, Berlin (1976). DOI 10.1007/978-3-642-65321-6 | MR 0427349 | Zbl 0335.16002
[6] X. Fu, H. Zhu, N. Ding: On copure projective modules and copure projective dimensions. Commun. Algebra 40 (2012), 343-359. DOI 10.1080/00927872.2010.531337 | MR 2876307 | Zbl 1250.16003
[7] A. I. Generalov: On weak and $\omega$-high purity in the category of modules. Math. USSR, Sb. 34 (1978), 345-356. DOI 10.1070/SM1978v034n03ABEH001209 | MR 0498697 | Zbl 0411.16024
[8] A. Hattori: A foundation of torsion theory for modules over general rings. Nagoya Math. J. 17 (1960), 147-158. DOI 10.1017/S0027763000002099 | MR 0137745 | Zbl 0117.02202
[9] C. U. Jensen, D. Simson: Purity and generalized chain conditions. J. Pure Appl. Algebra 14 (1979), 297-305. DOI 10.1016/0022-4049(79)90047-1 | MR 0533428 | Zbl 0407.18003
[10] L. Mao: Properties of $RD$-projective and $RD$-injective modules. Turk. J. Math. 35 (2011), 187-205. DOI 10.3906/mat-0904-53 | MR 2829591 | Zbl 1235.16002
[11] L. Mao, N. Ding: On relative injective modules and relative coherent rings. Commun. Algebra 34 (2006), 2531-2545. DOI 10.1080/00927870600651208 | MR 2240391 | Zbl 1104.16004
[12] L. Mao, N. Ding: On divisible and torsionfree modules. Commun. Algebra 36 (2008), 708-731. DOI 10.1080/00927870701724201 | MR 2388036 | Zbl 1144.16008
[13] A. Moradzadeh-Dehkordi, S. H. Shojaee: Rings in which every ideal is pure-projective or FP-projective. J. Algebra 478 (2017), 419-436. DOI 10.1016/j.jalgebra.2017.02.005 | MR 3621683 | Zbl 1405.16001
[14] W. K. Nicholson: On $PP$-rings. Period. Math. Hung. 27 (1993), 85-88. DOI 10.1007/BF01876633 | MR 1291156 | Zbl 0797.16003
[15] W. K. Nicholson, M. F. Yousif: Quasi-Frobenius Rings. Cambridge Tracts in Mathematics 158. Cambridge University Press, Cambridge (2003). DOI 10.1017/CBO9780511546525 | MR 2003785 | Zbl 1042.16009
[16] B. Olberding: Modules of injective dimension one over Prüfer domains. J. Pure Appl. Algebra 153 (2000), 263-287. DOI 10.1016/S0022-4049(99)00166-8 | MR 1783169 | Zbl 0978.13009
[17] J. J. Rotman: An Introduction to Homological Algebra. Pure and Applied Mathematics 85. Academic Press, New York (1979). MR 0538169 | Zbl 0441.18018
[18] T. Xiong: Rings of copure projective dimension one. J. Korean Math. Soc. 54 (2017), 427-440. DOI 10.4134/JKMS.j160014 | MR 3622332 | Zbl 1404.16002
[19] T. Xiong, F. Wang, K. Hu: Copure projective modules and CPH-rings. J. Sichuan Norm. Univ., Nat. Sci. 36 (2013), 198-201. (In Chinese.) DOI 10.3969/j.issn.1001-8395.2013.02.008 | Zbl 1289.13010

Affiliations:   Yusuf Alagöz (corresponding author), Hatay Mustafa Kemal University, Tayfur Sökmen Campus, 31060 Alahan-Antakya, Hatay, Turkey, e-mail: yusuf.alagoz@mku.edu.tr; Zübeyir Türkoğlu, Dokuz Eylül University, Adatepe, Tinaztepe Campus, 35390 Buca, İzmir, Turkey, e-mail: zubeyir.turkoglu@deu.edu.tr


 
PDF available at: