Czechoslovak Mathematical Journal, first online, pp. 1-13


Strongly Gorenstein-projective modules over Nakayama algebras

Xiu-Hua Luo, Kui Liu, Shijie Zhu

Received June 21, 2024.   Published online April 30, 2025.

Abstract:  We study finitely generated strongly Gorenstein-projective modules over artin algebras and show that each finitely generated strongly Gorenstein-projective module is a direct sum of some indecomposable periodic Gorenstein-projective modules and projective modules. Furthermore, we outline the structure of the category of the finitely generated strongly Gorenstein-projective $\Lambda$-modules, where $\Lambda$ is a Nakayama algebra.
Keywords:  (strongly) Gorenstein-projective module; Nakayama algebra; resolution quiver; Gorenstein core
Classification MSC:  16G10, 16E65

PDF available at:  Institute of Mathematics CAS

References:
[1] I. Assem, D. Simson, A. Skowroński: Elements of Representation Theory of Associative Algebras. Volume 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). DOI 10.1017/CBO9780511614309 | MR 2197389 | Zbl 1092.16001
[2] M. Auslander, M. Bridger: Stable Module Theory. Memoirs of the American Mathematical Society 94. AMS, Providence (1969). DOI 10.1090/memo/0094 | MR 0269685 | Zbl 0204.36402
[3] M. Auslander, I. Reiten, S. O. Smalø: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). DOI 10.1017/CBO9780511623608 | MR 1314422 | Zbl 0834.16001
[4] D. Bennis, N. Mahdou: Strongly Gorenstein projective, injective, and flat modules. J. Pure Appl. Algebra 210 (2007), 437-445. DOI 10.1016/j.jpaa.2006.10.010 | MR 2320007 | Zbl 1118.13014
[5] E. E. Enochs, O. M. G. Jenda: Gorenstein injective and projective modules. Math. Z. 220 (1995), 611-633. DOI 10.1007/BF02572634 | MR 1363858 | Zbl 0845.16005
[6] N. Gao, P. Zhang: Strongly Gorenstein projective modules over upper triangular matrix Artin algebras. Commun. Algebra 37 (2009), 4259-4268. DOI 10.1080/00927870902828934 | MR 2588847 | Zbl 1220.16013
[7] C. M. Ringel: The Gorenstein projective modules for the Nakayama algebras. I. J. Algebra 385 (2013), 241-261. DOI 10.1016/j.jalgebra.2013.03.014 | MR 3049570 | Zbl 1341.16010
[8] C. M. Ringel, P. Zhang: Gorenstein-projective and semi-Gorenstein-projective modules. Algebra Number Theory 14 (2020), 1-36. DOI 10.2140/ant.2020.14.1 | MR 4076806 | Zbl 1441.16016
[9] D. Shen: A note on resolution quivers. J. Algebra Appl. 13 (2014), Article ID 1350120, 5 pages. DOI 10.1142/S021949881350120X | MR 3125888 | Zbl 1292.16009
[10] X. Yang, Z. Liu: Strongly Gorenstein projective, injective and flat modules. J. Algebra 320 (2008), 2659-2674. DOI 10.1016/j.jalgebra.2008.07.006 | MR 2441993 | Zbl 1173.16006

Affiliations:   Xiu-Hua Luo, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China, e-mail: xiuhualuo@ntu.edu.cn; Kui Liu, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, and Shanghai Press and Publication Vocational-Technical School, Shanghai 200431, P. R. China, e-mail: liukui-andy@163.com; Shijie Zhu (corresponding author), Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China, e-mail: shijiezhu@ntu.edu.cn


 
PDF available at: