Czechoslovak Mathematical Journal, first online, pp. 1-17


The sharp constant for truncated Hardy-Littlewood maximal inequality

Jia Wu, Mingquan Wei, Dunyan Yan, Shao Liu

Received June 23, 2024.   Published online January 24, 2025.

Abstract:  This paper focuses on the operator norm of the truncated Hardy-Littlewood maximal operator $M^b_a$ and the strong truncated Hardy-Littlewood maximal operator $\widetilde{M}^{\boldsymbol{b}}_{\boldsymbol{a}}$, respectively. We first present the $L^1$-norm of $M^b_a$, and then the $L^1$-norm of $\widetilde{M}^{\boldsymbol{b}}_{\boldsymbol{a}}$ is given. Our study may have some enlightening significance for the research on sharp constant for the classical Hardy-Littlewood maximal inequality.
Keywords:  sharp constant; truncated maximal operator; strong maximal operator
Classification MSC:  42B25

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] D. R. Adams, L. I. Hedberg: Function Spaces and Potential Theory. Grundlehren der Mathematischen Wissenschaften 314. Springer, Berlin (1996). DOI 10.1007/978-3-662-03282-4 | MR 1411441 | Zbl 0834.46021
[2] J. M. Aldaz: Remarks on the Hardy-Littlewood maximal function. Proc. R. Soc. Edinb., Sect. A, Math. 128 (1998), 1-9. DOI 10.1017/S0308210500027116 | MR 1606325 | Zbl 0892.42010
[3] J. M. Aldaz, J. P. Lázaro: The best constant for the centered maximal operator on radial decreasing functions. Math. Inequal. Appl. 14 (2011), 173-179. DOI 10.7153/mia-14-14 | MR 2796986 | Zbl 1210.42031
[4] J. M. Aldaz, J. P. Lázaro: On high dimensional maximal operators. Banach J. Math. Anal. 7 (2013), 225-243. DOI 10.15352/bjma/1363784233 | MR 3039949 | Zbl 1266.42041
[5] L. Grafakos: Classical Fourier Analysis. Graduate Texts in Mathematics 249. Springer, New York (2014). DOI 10.1007/978-1-4939-1194-3 | MR 3243734 | Zbl 1304.42001
[6] L. Grafakos, S. Montgomery-Smith: Best constants for uncentered maximal functions. Bull. Lond. Math. Soc. 29 (1997), 60-64. DOI 10.1112/S0024609396002081 | MR 1416408 | Zbl 0865.42020
[7] S. Lu, D. Yan: $L^p$ boundedness of multilinear oscillatory singular integrals with Calderón-Zygmund kernel. Sci. China, Ser. A 45 (2002), 196-213. DOI 10.1360/02ys9021 | MR 1893315 | Zbl 1054.42013
[8] A. D. Melas: On the centered Hardy-Littlewood maximal operator. Trans. Am. Math. Soc. 354 (2002), 3263-3273. DOI 10.1090/S0002-9947-02-02900-8 | MR 1897399 | Zbl 1015.42015
[9] A. D. Melas: The best constant for the centered Hardy-Littlewood maximal inequality. Ann. Math. (2) 157 (2003), 647-688. DOI 10.4007/annals.2003.157.647 | MR 1973058 | Zbl 1055.42013
[10] J. Soria, P. Tradacete: Best constants for the Hardy-Littlewood maximal operator on finite graphs. J. Math. Anal. Appl. 436 (2016), 661-682. DOI 10.1016/j.jmaa.2015.11.076 | MR 3446971 | Zbl 1329.05286
[11] M. Wei, X. Nie, D. Wu, D. Yan: A note on Hardy-Littlewood maximal operators. J. Inequal. Appl. 2016 (2016), Article ID 21, 13 pages. DOI 10.1186/s13660-016-0963-x | MR 3450806 | Zbl 1333.42040
[12] X. Zhang, M. Wei, D. Yan, Q. He: Equivalence of operator norm for Hardy-Littlewood maximal operators and their truncated operators on Morrey spaces. Front. Math. China 15 (2020), 215-223. DOI 10.1007/s11464-020-0812-6  | MR 4074355 | Zbl 1440.42073

Affiliations:   Jia Wu, University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China, e-mail: wujia19@mails.ucas.ac.cn; Mingquan Wei, Xinyang Normal University, No.237 Nanhu Road, Xinyang, P. R. China, e-mail: Weimingquan11@mails.ucas.ac.cn; Dunyan Yan, Shao Liu (corresponding author), University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China, e-mail: Yanydunyan@ucas.ac.cn, liushao19@mails.ucas.ac.cn


 
PDF available at: