Czechoslovak Mathematical Journal, first online, pp. 1-14


Some remarks on plectic motivic spaces and spectra

Po Hu, Daniel Kriz, Igor Kriz, Petr Somberg

Received August 5, 2024.   Published online April 1, 2025.

Abstract:  We formulate a motivic homotopy theory version of the plectic conjecture of J. Nekovář and A. J. Scholl and give some initial discussion of it.
Keywords:  plectic structure; motivic homotopy theory; norm map; Shimura variety
Classification MSC:  14F42, 14G35

PDF available at:  Institute of Mathematics CAS

References:
[1] T. Bachmann, M. Hoyois: Norms in Motivic Homotopy Theory. Astérisque 425. Société Mathématique de France, Paris (2021). DOI 10.24033/ast.1147 | MR 4288071 | Zbl 1522.14028
[2] C. Davidescu, A. J. Scholl: Extensions in the cohomology of Hilbert modular varieties. Münster J. Math. 13 (2020), 509-518. DOI 10.17879/90169645603 | MR 4130690 | Zbl 1469.11193
[3] P. Deligne: Théorie de Hodge II. Publ. Math., Inst. Hautes Étud. Sci. 40 (1971), 5-57. (In French.) DOI 10.1007/BF02684692 | MR 0498551 | Zbl 0219.14007
[4] P. Deligne: Travaux de Shimura. Séminaire N. Bourbaki. Lecture Notes in Mathematics 244. Springer, Berlin (1971), 123-165. (In French.) DOI 10.1007/BFb0058700 | MR 0498581 | Zbl 0225.14007
[5] G. Faltings: Arithmetische Kompaktifizierung des Modulraums der abelschen Varietäten. Arbeitstagung Bonn 1984. Lecture Notes in Mathematics 1111. Springer, Berlin (1985), 321-383. (In German.) DOI 10.1007/BFb0084598 | MR 0797429 | Zbl 0597.14036
[6] G. Harder: On the cohomology of $SL(2,O)$. Lie Groups and Their Representations. Halsted Press, New York (1975), 139-150. MR 0425019 | Zbl 0395.57028
[7] P. Hu: Base change functors in the $\Bbb{A}^1$-stable homotopy category. Homology Homotopy Appl. 3 (2001), 417-451. DOI 10.4310/HHA.2001.v3.n2.a8 | MR 1856035 | Zbl 1012.55017
[8] J. F. Jardine: Simplicial presheaves. J. Pure. Appl. Algebra 47 (1987), 35-87. DOI 10.1016/0022-4049(87)90100-9 | MR 0906403 | Zbl 0624.18007
[9] J. F. Jardine: Motivic symmetric spectra. Doc. Math. 5 (2000), 445-553. DOI 10.4171/DM/86 | MR 1787949 | Zbl 0969.19004
[10] F. Morel, V. Voevodsky: $\Bbb{A}^1$-homotopy theory of schemes. Publ. Math., Inst. Hautes Étud. Sci. 90 (1999), 45-143. DOI 10.1007/BF02698831 | MR 1813224 | Zbl 0983.14007
[11] D. Mumford: Geometric Invariant Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete 34. Springer, Berlin (1965). MR 0214602 | Zbl 0147.39304
[12] J. Nekovář, A. J. Scholl: Introduction to plectic cohomology. Advances in the Theory of Automorphic Forms and Their $L$-Functions. Contemporary Mathematics 664. AMS, Providence (2016), 321-337. DOI 10.1090/conm/664 | MR 3502988 | Zbl 1402.11092
[13] J. Nekovář, A. J. Scholl: Plectic Hodge theory I. Available at http://dx.doi.org/10.17863/CAM.39172 (2017). DOI 10.17863/CAM.39172
[14] M. Rapoport: Compactifications de l'espace de modules de Hilbert-Blumenthal. Compos. Math. 36 (1978), 255-335. (In French.) MR 0515050 | Zbl 0386.14006
[15] G. van der Geer: Hilbert Modular Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Bd. 16. Springer, Berlin (1988). DOI 10.1007/978-3-642-61553-5 | MR 0930101 | Zbl 0634.14022

Affiliations:   Po Hu, University, Department of Mathematics, Wayne State University, 656 W. Kirby St., Detroit, MI 48202, USA, e-mail: pohu@wayne.edu; Daniel Kriz, University of Milan, Department of Mathematics "Federigo Enriques", Via Cesare Saldini, 50, 20133 Milan (MI), Italy, e-mail: daniel.kriz@unimi.it; Igor Kriz (corresponding author), Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109-1043, USA, e-mail: kriz.igor@gmail.com; Petr Somberg, Mathematical Institute of Charles University, Sokolovská 83, 18000 Prague 8, Czech Republic, e-mail: somberg@karlin.mff.cuni.cz


 
PDF available at: