Czechoslovak Mathematical Journal, first online, pp. 1-12


A simple proof of Fefferman-Stein type characterization of ${\rm CMO}(\mathbb{R}^n)$ space

Qingdong Guo, Zeqiang Linli, Kang Hu

Received August 7, 2024.   Published online February 6, 2025.

Abstract:  We give a simple proof of Fefferman-Stein type characterization of the space ${\rm CMO}(\mathbb{R}^n)$, that is, $f\in{\rm CMO} (\mathbb{R}^n)$ if and only if $f=\phi+\sum_{j=1}^nR_j\varphi_j,$ where $\phi,\varphi_j\in{C_0(\mathbb{R}^n)}$ and $R_j$, $j=1,2,\ldots,n$, are the Riesz transforms. Notice that this result was established by G. Bourdaud (2002), but his proof depends on the Fefferman-Stein type decomposition of the space ${\rm VMO}(\mathbb{R}^n)$ obtained by D. Sarason (1975). We will provide a direct method to prove this conclusion.
Keywords:  ${\rm CMO}(\mathbb{R}^n)$; Fefferman-Stein; Riesz transform
Classification MSC:  42B20, 42B35, 42B99

PDF available at:  Institute of Mathematics CAS

References:
[1] G. Bourdaud: Remarques sur certains sous-espaces de BMO$(\Bbb R^n)$ et de bmo$(\Bbb R^n)$. Ann. Inst. Fourier 52 (2002), 1187-1218. (In French.) DOI 10.5802/aif.1915 | MR 1927078 | Zbl 1061.46025
[2] R. R. Coifman, G. Weiss: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83 (1977), 569-645. DOI 10.1090/S0002-9904-1977-14325-5 | MR 0447954 | Zbl 0358.30023
[3] J. B. Conway: A Course in Functional Analysis. Graduate Texts in Mathematics 96. Springer, New York (1990). DOI 10.1007/978-1-4757-4383-8 | MR 1070713 | Zbl 0706.46003
[4] G. Dafni: Local VMO and weak convergence in $h^1$. Can. Math. Bull. 45 (2002), 46-59. DOI 10.4153/CMB-2002-005-2 | MR 1884133 | Zbl 1004.42020
[5] Y. Ding, T. Mei: Some characterizations of $VMO(\Bbb R^n)$. Anal. Theory Appl. 30 (2014), 387-398. DOI 10.4208/ata.2014.v30.n4.6 | MR 3303365 | Zbl 1340.42061
[6] C. L. Fefferman, E. M. Stein: $H^p$ spaces of several variables. Acta Math. 129 (1972), 137-193. DOI 10.1007/BF02392215 | MR 0447953 | Zbl 0257.46078
[7] L. Grafakos: Classical Fourier Analysis. Graduate Texts in Mathematics 249. Springer, New York (2014). DOI 10.1007/978-1-4939-1194-3 | MR 3243734 | Zbl 1304.42001
[8] F. John, L. Nirenberg: On functions of bounded mean oscillation. Commun. Pure Appl. Math. 14 (1961), 415-426. DOI 10.1002/cpa.3160140317 | MR 0131498 | Zbl 0102.04302
[9] L. G. Liu, D. C. Yang, D. Y. Yang: Atomic Hardy-type spaces between $H^1$ and $L^1$ on metric spaces with non-doubling measures. Acta Math. Sin., Engl. Ser. 27 (2011), 2445-2468. DOI 10.1007/s10114-011-9118-7 | MR 2853801 | Zbl 1266.42061
[10] U. Neri: Fractional integration on the space $H^1$ and its dual. Stud. Math. 53 (1975), 175-189. DOI 10.4064/sm-53-2-175-189 | MR 0388074 | Zbl 0269.44012
[11] D. Sarason: Functions of vanishing mean oscillation. Trans. Am. Math. Soc. 207 (1975), 391-405. DOI 10.1090/S0002-9947-1975-0377518-3 | MR 0377518 | Zbl 0319.42006
[12] E. M. Stein, G. Weiss: On the theory of harmonic functions of several variables. I. The theory of $H^p$-spaces. Acta Math. 103 (1960), 25-62. DOI 10.1007/BF02546524 | MR 0121579 | Zbl 0097.28501
[13] A. Uchiyama: On the compactness of operators of Hankel type. Tohoku Math. J., II. Ser. 30 (1978), 163-171. DOI 10.2748/tmj/1178230105 | MR 0467384 | Zbl 0384.47023

Affiliations:   Qingdong Guo, School of Mathematical Sciences, Xiamen University, Xiamen 361005, P. R. China, e-mail: qingdongmath@stu.xmu.edu.cn; Zeqiang Linli, School of Mathematical and Statistics, Guangdong University of Foreign Studies, 21 Luntou Road, Guangzhou 510004, P. R. China, e-mail: linlizeqiang@gdufs.edu.cn; Kang Hu (corresponding author), School of Information Engineering, Wuhan Business University, No. 816 Dongfeng Avenue, Wuhan Economic and Technological Development Zone, Wuhan 430056, P. R. China, e-mail: huk2016423@163.com


 
PDF available at: