Czechoslovak Mathematical Journal, first online, pp. 1-17


On weakly $(1,n)$-ideals and weakly $n$-ideals

Bayram Ali Ersoy, Suat Koç, Ünsal Tekir, Gürsel Yeşilot, Eda Yıldız

Received August 12, 2024.   Published online March 28, 2025.

Abstract:  We study weakly $(1,n)$-ideals and weakly $n$-ideals in commutative rings. Let $A$ be a commutative ring with a nonzero identity and $I$ be a proper ideal of $A$. Then $I$ is said to be a weakly $(1,n)$-ideal (or weakly $n$-ideal) if whenever $0\neq abc\in I$ for some nonunits $a,b,c\in A$ (or $0\neq ab\in I$ for some $a,b\in A)$, then either $ab\in I$ or $c\in\mathfrak{N}(A)$ (or $a\in I$ or $b\in\mathfrak{N}(A)$, respectively), where $\mathfrak{N}(A)$ is the set of all nilpotent elements of $A$. Many examples and properties of weakly $(1,n)$-ideals and weakly $n$-ideals are given. We characterize all rings in which every proper ideal is a weakly $(1,n)$-ideal and weakly $n$-ideal. Furthermore, we investigate both weakly $(1,n)$-ideals and weakly $n$-ideals in amalgamated algebras along an ideal.
Keywords:  1-absorbing primary ideal; $n$-ideal; weakly $n$-ideal; weakly $(1,n)$-ideal
Classification MSC:  13A15

PDF available at:  Institute of Mathematics CAS

References:
[1] F. A. A. Almahdi, E. M. Bouba, A. N. A. Koam: On strongly 1-absorbing primary ideals of commutative rings. Bull. Korean Math. Soc. 57 (2020), 1205-1213. DOI 10.4134/BKMS.b190877 | MR 4155008 | Zbl 1454.13004
[2] D. D. Anderson, E. Smith: Weakly prime ideals. Houston J. Math. 29 (2003), 831-840. MR 2045656 | Zbl 1086.13500
[3] D. D. Anderson, M. Winders: Idealization of a module. J. Commut. Algebra 1 (2009), 3-56. DOI 10.1216/JCA-2009-1-1-3 | MR 2462381 | Zbl 1194.13002
[4] M. F. Atiyah, I. G. Macdonald: Introduction to Commutative Algebra. Addison-Wesley, Reading (1969). MR 0242802 | Zbl 0175.03601
[5] A. Badawi: On 2-absorbing ideals of commutative rings. Bull. Aust. Math. Soc. 75 (2007), 417-429. DOI 10.1017/S0004972700039344 | MR 2331019 | Zbl 1120.13004
[6] A. Badawi, E. Y. Celikel: On 1-absorbing primary ideals of commutative rings. J. Algebra Appl. 19 (2020) Article ID 2050111, 12 pages. DOI 10.1142/S021949882050111X | MR 4120088 | Zbl 1440.13008
[7] A. Badawi, E. Y. Celikel: On weakly 1-absorbing primary ideals of commutative rings. Available at https://arxiv.org/abs/2002.12608 (2020), 13 pages. DOI 10.48550/arXiv.2002.12608
[8] A. Badawi, A. Y. Darani: On weakly 2-absorbing ideals of commutative rings. Houston J. Math. 39 (2013), 441-452. MR 3080448 | Zbl 1278.13001
[9] A. Badawi, U. Tekir, E. Yetkin: On 2-absorbing primary ideals in commutative rings. Bull. Korean Math. Soc. 51 (2014), 1163-1173. DOI 10.4134/BKMS.2014.51.4.1163 | MR 3248714 | Zbl 1308.13001
[10] C. Beddani, W. Messirdi: 2-prime ideals and their applications. J. Algebra Appl. 15 (2016), Article ID 1650051, 11 pages. DOI 10.1142/S0219498816500511 | MR 3454713 | Zbl 1338.13038
[11] M. Chhiti, N. Mahdou, M. Tamekkante: Clean property in amalgamated algebras along an ideal. Hacet. J. Math. Stat. 44 (2015), 41-49. DOI 10.15672/HJMS.2015449103 | MR 3363762 | Zbl 1320.13020
[12] M. D'Anna, C. A. Finocchiaro, M. Fontana: Amalgamated algebras along an ideal. Commutative Algebra and Its Applications. Walter de Gruyter, Berlin (2009), 155-172. DOI 10.1515/9783110213188.155 | MR 2606283 | Zbl 1177.13043
[13] M. D'Anna, C. A. Finocchiaro, M. Fontana: Properties of chains of prime ideals in an amalgamated algebra along an ideal. J. Pure Appl. Algebra 214 (2010), 1633-1641. DOI 10.1016/j.jpaa.2009.12.008 | MR 2593689 | Zbl 1191.13006
[14] J. A. Huckaba: Commutative Rings with Zero Divisors. Monographs and Textbooks in Pure and Applied Mathematics 117. Marcel Dekker, New York (1988). MR 0938741 | Zbl 0637.13001
[15] M. Issoual, N. Mahdou, M. A. S. Moutui: On $n$-absorbing and strongly $n$-absorbing ideals of amalgamation. J. Algebra Appl. 19 (2020), Article ID 2050199, 16 pages. DOI 10.1142/S0219498820501996 | MR 4140139 | Zbl 1446.13002
[16] A. El Khalfi, H. Kim, N. Mahdou: Amalgamated algebras issued from $\phi$-chained rings and $\phi$-pseudo-valuation rings. Bull. Iran. Math. Soc. 47 (2021), 1599-1609. DOI 10.1007/s41980-020-00461-y | MR 4308883 | Zbl 1475.13015
[17] S. Koç, Ü. Tekir, G. Ulucak: On strongly quasi primary ideals. Bull. Korean Math. Soc. 56 (2019), 729-743. DOI 10.4134/BKMS.b180522 | MR 3960633 | Zbl 1419.13040
[18] S. Koç, Ü. Tekir, E. Yıldız: On weakly 1-absorbing prime ideals. Ric. Mat. 72 (2023), 723-738. DOI 10.1007/s11587-020-00550-4 | MR 4649462 | Zbl 1530.13005
[19] S. Koç, R. N. Uregen, Ü. Tekir: On 2-absorbing quasi primary submodules. Filomat 31 (2017), 2943-2950. DOI 10.2298/FIL1710943K | MR 3639383 | Zbl 1488.13011
[20] N. Mahdou, M. A. S. Moutui: Gaussian and Prüfer conditions in bi-amalgamated algebras. Czech. Math. J. 70 (2020), 381-391. DOI 10.21136/CMJ.2019.0335-18 | MR 4111849 | Zbl 1513.13050
[21] N. Mahdou, M. A. S. Moutui, Y. Zahir: Weakly prime ideals issued from an amalgamated algebra. Hacet. J. Math. Stat. 49 (2020), 1159-1167. DOI 10.15672/hujms.557437 | MR 4199068 | Zbl 1488.13061
[22] R. Mohamadian: $r$-ideals in commutative rings. Turk. J. Math. 39 (2015), 733-749. DOI 10.3906/mat-1503-35 | MR 3395802 | Zbl 1348.13003
[23] M. Nagata: Local Rings. Interscience Tracts in Pure and Applied Mathematics. John Wiley and Sons, New York (1962). MR 0155856 | Zbl 0123.03402
[24] Ü. Tekir, S. Koç, K. H. Oral: $n$-ideals of commutative rings. Filomat 31 (2017), 2933-2941. DOI 10.2298/FIL1710933T | MR 3639382 | Zbl 1488.13016
[25] Ü. Tekir, S. Koç, K. H. Oral, K. P. Shum: On 2-absorbing quasi-primary ideals in commutative rings. Commun. Math. Stat. 4 (2016), 55-62. DOI 10.1007/s40304-015-0075-9 | MR 3475842 | Zbl 1338.13007
[26] A. Yassine, M. J. Nikmehr, R. Nikandish: On 1-absorbing prime ideals of commutative rings. J. Algebra Appl. 20 (2021), Article ID 2150175, 12 pages. DOI 10.1142/S0219498821501759 | MR 4326079 | Zbl 1479.13006
[27] E. Yildiz, U. Tekir, S. Koc: On $\phi$-1-absorbing prime ideals. Beitr. Algebra Geom. 62 (2021), 907-918. DOI 10.1007/s13366-020-00557-w | MR 4333247 | Zbl 1475.13006

Affiliations:   Bayram Ali Ersoy, Department of Mathematics, Yildiz Technical University, 34220, Istanbul, Turkey, e-mail: ersoya@yildiz.edu.tr; Suat Koç, Department of Mathematics, Istanbul Medeniyet University, 34700, Istanbul, Turkey, e-mail: suat.koc@medeniyet.edu.tr; Ünsal Tekir, Department of Mathematics, Marmara University, 34722, Istanbul, Turkey, e-mail: utekir@marmara.edu.tr; Gürsel Yeşilot, Eda Yıldız (corresponding author), Department of Mathematics, Yildiz Technical University, 34220, Istanbul, Turkey, e-mail: gyesilot@yildiz.edu.tr, edyildiz@yildiz.edu.tr


 
PDF available at: