Czechoslovak Mathematical Journal, first online, pp. 1-16


The Dirichlet-to-Neumann operator on rough domains with finite volume

A. F. M. ter Elst, Varun Narula

Received August 8, 2023.   Published online March 5, 2025.   OPEN ACCESS

Abstract:  Using a variational formulation we consider the Dirichlet-to-Neumann operator on a connected open set $\Omega\subset\mathbb{R}^d$ of finite volume, assuming only that the surface measure is locally finite on the boundary. Then the boundary may have infinite measure and trace properties become delicate. We show that this has consequences for the kernel of the Dirichlet-to-Neumann operator and characterise the situation in which a trace on $\Omega$ both exists and is unique.
Keywords:  Dirichlet-to-Neumann operator; trace; form method; rough boundary
Classification MSC:  46E35, 47A07

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] W. Arendt, A. F. M. ter Elst: The Dirichlet-to-Neumann operator on rough domains. J. Differ. Equations 251 (2011), 2100-2124. DOI 10.1016/j.jde.2011.06.017 | MR 2823661 | Zbl 1241.47036
[2] W. Arendt, A. F. M. ter Elst: Sectorial forms and degenerate differential operators. J. Oper. Theory 67 (2012), 33-72. MR 2881534 | Zbl 1243.47009
[3] W. Arendt, M. Warma: Dirichlet and Neumann boundary conditions: What is in between? J. Evol. Equ. 3 (2003), 119-135. DOI 10.1007/s000280300005 | MR 1977430 | Zbl 1044.31005
[4] W. Arendt, M. Warma: The Laplacian with Robin boundary conditions on arbitrary domains. Potential Anal. 19 (2003), 341-363. DOI 10.1023/A:1024181608863 | MR 1988110 | Zbl 1028.31004
[5] D. Daners: Robin boundary value problems on arbitrary domains. Trans. Am. Math. Soc. 352 (2000), 4207-4236. DOI 10.1090/S0002-9947-00-02444-2 | MR 1650081 | Zbl 0947.35072
[6] D. Daners: Principal eigenvalues for generalised indefinite Robin problems. Potential Anal. 38 (2013), 1047-1069. DOI 10.1007/s11118-012-9306-9 | MR 3042694 | Zbl 1264.35152
[7] L. C. Evans, R. F. Gariepy: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992). DOI 10.1201/b18333 | MR 1158660 | Zbl 0804.28001
[8] D. H. Fremlin: Measure Theory. Vol. 2. Broad Foundations. Torres Fremlin, Colchester (2003). MR 2462280 | Zbl 1165.28001
[9] V. G. Maz'ya: Sobolev Spaces: With Applications to Elliptic Partial Differential Equations. Grundlehren der mathematischen Wissenschaften 342. Springer, Berlin (2011). DOI 10.1007/978-3-642-15564-2 | MR 2777530 | Zbl 1217.46002
[10] M. Sauter: Uniqueness of the approximative trace. Indiana Univ. Math. J. 69 (2020), 171-204. DOI 10.1512/iumj.2020.69.8106 | MR 4077160 | Zbl 1453.46034

Affiliations:   A. F. M. ter Elst (corresponding author), Varun Narula, University of Auckland, 38 Princes Street, Auckland Central, Auckland 1010, New Zealand e-mail: terelst@math.auckland.ac.nz, vnar603@aucklanduni.ac.nz


 
PDF available at: