Czechoslovak Mathematical Journal, first online, pp. 1-11


Non-finitely generated bigraded local cohomology modules

Ahad Rahimi

Received September 18, 2024.   Published online January 28, 2025.

Abstract:  Let $\Bbbk$ be a field, and let $S=\Bbbk[x_1, \dots, x_m, y_1, \dots, y_n]$ denote a standard bigraded polynomial ring over $\Bbbk$. Consider $M$, a finitely generated bigraded $S$-module, and set $Q=\langle y_1, \dots, y_n \rangle$. Assume that there exists $\frak p \in{\rm Ass}_S M$ such that ${\rm cd}(Q, S/\frak p)=j>0$. We demonstrate that ${\rm H}^j_Q(M)$ is not finitely generated. Furthermore, we explore a more general version of this result.
Keywords:  associated prime; bigraded module; cohomological dimension; finiteness dimension; maximal depth; local cohomology
Classification MSC:  13C15, 13D45, 16W50

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] M. P. Brodmann, R. Y. Sharp: Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 136. Cambridge University Press, Cambridge (2013). DOI 10.1017/CBO9780511629204 | MR 3014449 | Zbl 1263.13014
[2] W. Bruns, J. Herzog: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). DOI 10.1017/CBO9780511608681 | MR 1251956 | Zbl 0909.13005
[3] A. Capani, G. Niesi, L. Robbiano: CoCoA: A system for Computations in Commutative Algebra. Available at http://cocoa.dima.unige.it. SW 143
[4] M. Chardin, J.-P. Jouanolou, A. Rahimi: The eventual stability of depth, associated primes and cohomology of a graded module. J. Commut. Algebra 5 (2013), 63-92. DOI 10.1216/JCA-2013-5-1-63 | MR 3084122 | Zbl 1275.13014
[5] M. T. Dibaei, A. Vahidi: Torsion functors of local cohomology modules. Algebr. Represent. Theory 14 (2011), 79-85. DOI 10.1007/s10468-009-9177-y | MR 2763293 | Zbl 1213.13035
[6] J. Herzog, D. Popescu, M. Vladoiu: Stanley depth and size of a monomial ideal. Proc. Am. Math. Soc. 140 (2012), 493-504. DOI 10.1090/S0002-9939-2011-11160-2 | MR 2846317 | Zbl 1234.13013
[7] M. Jahangiri, A. Rahimi: Relative Cohen-Macaulayness and relative unmixedness of bigraded modules. J. Commut. Algebra 4 (2012), 551-575. DOI 10.1216/JCA-2012-4-4-551 | MR 3053452 | Zbl 1266.13011
[8] H. Matsumura: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1989). DOI 10.1017/CBO9781139171762 | MR 1011461 | Zbl 0666.13002
[9] P. Pourghobadian, K. Divaani-Aazar, A. Rahimi: Relative homological rings and modules. To appear in Rocky Mt. J. Math.
[10] A. Rahimi: Relative Cohen-Macaulayness of bigraded modules. J. Algebra 323 (2010), 1745-1757. DOI 10.1016/j.jalgebra.2009.11.026 | MR 2588136 | Zbl 1184.13053
[11] A. Rahimi: Sequentially Cohen-Macaulayness of bigraded modules. Rocky Mt. J. Math. 47 (2017), 621-635. DOI 10.1216/RMJ-2017-47-2-621 | MR 3635377 | Zbl 1401.13032
[12] A. Rahimi: Maximal depth property of bigraded modules. Rend. Circ. Mat. Palermo (2) 70 (2021), 947-958. DOI 10.1007/s12215-020-00538-x | MR 4286007 | Zbl 1473.13007
[13] R. H. Villarreal: Monomial Algebras. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015). DOI 10.1201/b18224 | MR 3362802 | Zbl 1325.13004

Affiliations:   Ahad Rahimi, Department of Mathematics, Razi University, Taqe Bostan, University St, 6714414971, Kermanshah, Iran, e-mail: ahad.rahimi@razi.ac.ir


 
PDF available at: