Czechoslovak Mathematical Journal, first online, pp. 1-18


Composition operators on variable exponent Bloch spaces

Xin He, Cezhong Tong, Zicong Yang, Zehua Zhou

Received September 18, 2024.   Published online March 11, 2025.

Abstract:  We consider the composition operator $C_{\varphi}$ on the variable exponent Bloch space $\mathcal{B}^{\alpha({\cdot})}$, which consists of all analytic functions $f$ on the unit disk $\mathbb{D}$ such that $\sup\{(1-|z|^2)^{\alpha(z)}|f'(z)| \colon z\in\mathbb{D} \}<\infty.$ Here, $\alpha(z)$ is a log-Hölder continuous function on $\mathbb{D}$. The boundedness and compactness of $C_{\varphi}$ are characterized. Besides, we show that $(1-|z|^2)^{\alpha(z)}f'(z)$ is Lipschitz continuous in terms of the pseudo-hyperbolic metric under the Lipschitz continuity of $\alpha(z)$. By using this result, we study the bounded and compact difference $C_{\varphi}-C_{\psi}$ of two composition operators on $\mathcal{B}^{\alpha({\cdot})}$, and the boundedness from below of $C_{\varphi}$ is partially described.
Keywords:  variable exponent Bloch space; composition operator; difference; boundedness from below
Classification MSC:  47B33, 46E15, 32A18

PDF available at:  Institute of Mathematics CAS

References:
[1] P. S. Bourdon: Components of linear-fractional composition operators. J. Math. Anal. Appl. 279 (2003), 228-245. DOI 10.1016/S0022-247X(03)00004-0 | MR 1970503 | Zbl 1043.47021
[2] G. R. Chacón, H. Rafeiro: Variable exponent Bergman spaces. Nonlinear Anal., Theory Methods Appl., Ser. A 105 (2014), 41-49. DOI 10.1016/j.na.2014.04.001 | MR 3200739 | Zbl 1288.30059
[3] G. R. Chacón, H. Rafeiro: Toeplitz operators on variable exponent Bergman spaces. Mediterr. J. Math. 13 (2016), 3525-3536. DOI 10.1007/s00009-016-0701-0 | MR 3554324 | Zbl 1354.30049
[4] G. R. Chacón, H. Rafeiro, J. C. Vallejo: Carleson measures for variable exponent Bergman spaces. Complex Anal. Oper. Theory 11 (2017), 1623-1638. DOI 10.1007/s11785-016-0573-0 | MR 3702967 | Zbl 1387.30081
[5] H. Chen: Boundedness from below of composition operators on the Bloch spaces. Sci. China, Ser. A 46 (2003), 838-846. DOI 10.1360/02ys0212 | MR 2029195 | Zbl 1097.47509
[6] H. Chen, P. Gauthier: Boundednesss from below of composition operators on $\alpha$-Bloch spaces. Can. Math. Bull. 51 (2008), 195-204. DOI 10.4153/CMB-2008-021-2 | MR 2414207 | Zbl 1148.30017
[7] C. C. Cowen, B. D. MacCluer: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995). DOI 10.1201/9781315139920 | MR 1397026 | Zbl 0873.47017
[8] D. V. Cruz-Uribe, A. Fiorenza: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Heidelberg (2013). DOI 10.1007/978-3-0348-0548-3 | MR 3026953 | Zbl 1268.46002
[9] L. Diening, P. Harjulehto, P. Hästö, M. Růžička: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017. Springer, Berlin (2011). DOI 10.1007/978-3-642-18363-8 | MR 2790542 | Zbl 1222.46002
[10] A. Dieudonne: Hankel operators between Bergman spaces with variable exponents on the unit ball of $\Bbb{C}^n$. Complex Anal. Oper. Theory 16 (2022), Article ID 40, 37 pages. DOI 10.1007/s11785-022-01223-w | MR 4396709 | Zbl 1487.32024
[11] T. Ferguson: Equivalence among variable exponent Hardy or Bergman spaces. J. Math. Anal. Appl. 475 (2019), 173-189. DOI 10.1016/j.jmaa.2019.02.028 | MR 3944316 | Zbl 1482.46033
[12] P. Ghatage, J. Yan, D. Zheng: Composition operators with closed range on the Bloch space. Proc. Am. Math. Soc. 129 (2001), 2039-2044. DOI 10.1090/S0002-9939-00-05771-3 | MR 1825915 | Zbl 0984.47024
[13] T. Hosokawa, S. Ohno: Differences of composition operators on the Bloch spaces. J. Oper. Theory 57 (2007), 229-242. MR 2328996 | Zbl 1174.47019
[14] A. Karapetyants, J. E. Restrepo: Generalized Hölder type spaces of harmonic functions in the unit ball and half space. Czech. Math. J. 70 (2020), 675-691. DOI 10.21136/CMJ.2019.0431-18 | MR 4151698 | Zbl 1524.42045
[15] A. Karapetyants, J. E. Restrepo: Composition operators on holomorphic variable exponent spaces. Math. Methods Appl. Sci. 45 (2022), 8566-8577. DOI 10.1002/mma.7307 | MR 4475224 | Zbl 07777606
[16] A. Karapetyants, S. Samko: Spaces BMO$^{p(\cdot)}(\Bbb{D})$ of a variable exponent $p(z)$. Georgian Math. J. 17 (2010), 529-542. DOI 10.1515/gmj.2010.028 | MR 2719633 | Zbl 1201.30072
[17] A. Karapetyants, S. Samko: Mixed norm variable exponent Bergman space on the unit disc. Complex Var. Elliptic Equ. 61 (2016), 1090-1106. DOI 10.1080/17476933.2016.1140750 | MR 3500518 | Zbl 1351.30042
[18] B. Li, C. Ouyang: Higher radial derivative of Bloch type functions. Acta Math. Sci., Ser. B, Engl. Ed. 22 (2002), 433-445. DOI 10.1016/S0252-9602(17)30315-6 | MR 1938530 | Zbl 1032.32005
[19] K. Madigan, A. Matheson: Compact composition operators on the Bloch space. Trans. Am. Math. Soc. 347 (1995), 2679-2687. DOI 10.1090/S0002-9947-1995-1273508-X | MR 1273508 | Zbl 0826.47023
[20] J. Moorhouse: Compact differences of composition operators. J. Funct. Anal. 219 (2005), 70-92. DOI 10.1016/j.jfa.2004.01.012 | MR 2108359 | Zbl 1087.47032
[21] S. Ohno, K. Stroethoff, R. Zhao: Weighted composition operators between Bloch-type spaces. Rocky Mt. J. Math. 33 (2003), 191-215. DOI 10.1216/rmjm/1181069993 | MR 1994487 | Zbl 1042.47018
[22] J. H. Shapiro: Composition Operators and Classical Function Theory. Universitext: Tracts in Mathematics. Springer, New York (1993). DOI 10.1007/978-1-4612-0887-7 | MR 1237406 | Zbl 0791.30033
[23] J. H. Shapiro, C. Sundberg: Isolation amongst the composition operators. Pac. J. Math. 145 (1990), 117-152. DOI 10.2140/pjm.1990.145.117 | MR 1066401 | Zbl 0732.30027
[24] Y. Shi, S. Li: Differences of composition operators on Bloch type spaces. Complex Anal. Oper. Theory 11 (2017), 227-242. DOI 10.1007/s11785-016-0595-7 | MR 3595984 | Zbl 1361.30098
[25] Z.-C. Yang, Z.-H. Zhou: Atomic decomposition and composition operators on variable exponent Bergman spaces. Mediterr. J. Math. 19 (2022), Article ID 10, 20 pages. DOI 10.1007/s00009-021-01885-4 | MR 4343053 | Zbl 1482.30130
[26] K. Zhu: Bloch type spaces of analytic functions. Rocky Mt. J. Math. 23 (1993), 1143-1177. DOI 10.1216/rmjm/1181072549 | MR 1245472 | Zbl 0787.30019
[27] K. Zhu: Operator Theory in Function Spaces. Mathematical Surveys and Monographs 138. AMS, Providence (2007). DOI 10.1090/surv/138 | MR 2311536 | Zbl 1123.47001

Affiliations:   Xin He, Cezhong Tong, Zicong Yang (corresponding author), Department of Mathematics, Hebei University of Technology, No. 5340, Xiping Road, Beichen District, Tianjin 300401, P. R.China, e-mail: hexinsx2000@163.com, ctong@hebut.edu.cn, zicongyang@126.com, zc25@hebut.edu.cn; Zehua Zhou, School of Mathematics, Tianjin University, No. 135, Ya Guan Road, Jinnan District, Tianjin 300354, P. R. China, e-mail: zehuazhoumath@aliyun.com


 
PDF available at: