Czechoslovak Mathematical Journal, first online, pp. 1-14


Weakly $S$-2-absorbing ideals

Smach Sihem

Received September 23, 2024.   Published online January 26, 2025.

Abstract:  Let $R$ be a commutative ring with identity. The notion of $S$-2-absorbing ideal was introduced by G. Ulucak, Ü. Tekir, S. Koç (2020) as a generalization of 2-absorbing ideal. We introduce $a$ weaker version of 2-absorbing ideals by defining the concept of weakly-$S$-2-absorbing ideal. Let $S\subseteq R$ be a multiplicatively closed subset of $R$. A proper ideal $I$ of $R$ disjoint with $S$ is called a weakly $S$-2-absorbing ideal of $R$ if whenever $abc\in I$ for $a,b,c\in R$ then there exists $s\in S$ such that $sab\in I$ or $sbc\in I$ or $sac\in I$. We investigate many properties and characterizations of weakly $S$-2-absorbing ideals.
Keywords:  $S$-2-absorbing ideal; weakly $S$-2-absorbing ideal; $S$-prime ideal
Classification MSC:  13A15, 13A99

PDF available at:  Institute of Mathematics CAS

References:
[1] D. D. Anderson, T. Arabaci, Ü. Tekir, S. Koç: On $S$-multiplication modules. Commun. Algebra 48 (2020), 3398-3407. DOI 10.1080/00927872.2020.1737873 | MR 4115356 | Zbl 1452.13003
[2] D. F. Anderson, A. Badawi: On $n$-absorbing ideals of commutative rings. Commun. Algebra 39 (2011), 1646-1672. DOI 10.1080/00927871003738998 | MR 2821499 | Zbl 1232.13001
[3] D. D. Anderson, M. Winders: Idealization of a module. J. Commut. Algebra 1 (2009), 3-56. DOI 10.1216/JCA-2009-1-1-3 | MR 2462381 | Zbl 1194.13002
[4] A. Badawi: On 2-absorbing ideals of commutative rings. Bull. Aust. Math. Soc. 75 (2007), 417-429. DOI 10.1017/S0004972700039344 | MR 2331019 | Zbl 1120.13004
[5] M. D'Anna, C. A. Finocchiaro, M. Fontana: Properties of chains of prime ideals in an amalgamated algebra along an ideal. J. Pure Appl. Algebra 214 (2010), 1633-1641. DOI 10.1016/j.jpaa.2009.12.008 | MR 2593689 | Zbl 1191.13006
[6] M. D'Anna, M. Fontana: An amalgamated duplication of a ring along an ideal: The basic properties. J. Algebra Appl. 6 (2007), 443-459. DOI 10.1142/S0219498807002326 | MR 2342602 | Zbl 1126.13002
[7] A. Hamed, A. Malek: $S$-prime ideals of a commutative ring. Beitr. Algebra Geom. 61 (2020), 533-542. DOI 10.1007/s13366-019-00476-5 | MR 4127389 | Zbl 1442.13010
[8] M. Nagata: Local Rings. Interscience Tracts in Pure and Applied Mathematics 13. John Wiley & Sons, New York (1962). MR 0155856 | Zbl 0123.03402
[9] S. Sihem, H. Sana: On Anderson-Badawi conjectures. Beitr. Algebra Geom. 58 (2017), 775-785. DOI 10.1007/s13366-017-0343-9 | MR 3702976 | Zbl 1390.13011
[10] G. Ulucak, Ü. Tekir, S. Koç: On $S$-2-absorbing submodules and vn-regular modules. An. Ştiinţ. Univ. "Ovidius" Constanţa, Ser. Mat. 28 (2020), 239-257. DOI 10.2478/auom-2020-0030 | MR 4152440 | Zbl 1488.13029

Affiliations:   Smach Sihem, Department of Mathematics, Faculty of Sciences, Avenue of the Environment, 5019 Monastir, Tunisia, e-mail: smach_sihem@yahoo.com


 
PDF available at: