Czechoslovak Mathematical Journal, first online, pp. 1-14


Commuting Toeplitz operators with harmonic symbols on the Fock-Sobolev space

Jie Qin, Youqi Liu

Received September 23, 2024.   Published online January 21, 2025.

Abstract:  We make a progress towards describing the commuting Toeplitz operators with harmonic symbols on the Fock-Sobolev space. For the certain symbol space, we obtain two Toeplitz operators with harmonic symbols commuting only in the obvious cases, which is different from the known result in the Fock space.
Keywords:  commuting Toeplitz operator; Berezin transform; Fock-Sobolev space
Classification MSC:  47B35

PDF available at:  Springer   Institute of Mathematics CAS

References:
[1] S. Axler, Ž. Čučković: Commuting Toeplitz operators with harmonic symbols. Integral Equations Oper. Theory 14 (1991), 1-12. DOI 10.1007/BF01194925 | MR 1079815 | Zbl 0733.47027
[2] W. Bauer, B. R. Choe, H. Koo: Commuting Toeplitz operators with pluriharmonic symbols on the Fock space. J. Funct. Anal. 268 (2015), 3017-3060. DOI 10.1016/j.jfa.2015.03.003 | MR 3331792 | Zbl 1327.47023
[3] A. Brown, P. R. Halmos: Algebraic properties of Toeplitz operators. J. Reine Angew. Math. 213 (1964), 89-102. DOI 10.1515/crll.1964.213.89 | MR 0160136 | Zbl 0116.32501
[4] H. R. Cho, K. Zhu: Fock-Sobolev spaces and their Carleson measures. J. Funct. Anal. 263 (2012), 2483-2506. DOI 10.1016/j.jfa.2012.08.003 | MR 2964691 | Zbl 1264.46017
[5] B. R. Choe, H. Koo, Y. J. Lee: Commuting Toeplitz operators on the polydisk. Trans. Am. Math. Soc. 356 (2004), 1727-1749. DOI 10.1090/S0002-9947-03-03430-5 | MR 2031039 | Zbl 1060.47034
[6] B. R. Choe, Y. J. Lee: Pluriharmonic symbols of commuting Toeplitz operators. Ill. J. Math. 37 (1993), 424-436. DOI 10.1215/ijm/1255987059 | MR 1219648 | Zbl 0816.47024
[7] B. R. Choe, J. Yang: Commutants of Toeplitz operators with radial symbols on the Fock-Sobolev space. J. Math. Anal. Appl. 415 (2014), 779-790. DOI 10.1016/j.jmaa.2014.02.018 | MR 3178290 | Zbl 1308.47035
[8] T. Le: The commutants of certain Toeplitz operators on weighted Bergman spaces. J. Math. Anal. Appl. 348 (2008), 1-11. DOI 10.1016/j.jmaa.2008.07.005 | MR 2449321 | Zbl 1168.47025
[9] Y. J. Lee: Commuting Toeplitz operators on the Hardy space of the polydisk. Proc. Am. Math. Soc. 138 (2010), 189-197. DOI 10.1090/S0002-9939-09-10073-4 | MR 2550183 | Zbl 1189.47028
[10] I. Louhichi, N. V. Rao: Bicommutants of Toeplitz operators. Arch. Math. 91 (2008), 256-264. DOI 10.1007/s00013-008-2790-x | MR 2439600 | Zbl 1168.47026
[11] J. Qin: Semi-commuting Toeplitz operators on Fock-Sobolev spaces. Bull. Sci. Math. 179 (2022), Article ID 103156, 19 pages. DOI 10.1016/j.bulsci.2022.103156 | MR 4436349 | Zbl 07574664
[12] J. Qin: Semi-commutants of Toeplitz operators on Fock-Sobolev space of nonnegative orders. Complex Anal. Oper. Theory 18 (2024), Article ID 137, 24 pages. DOI 10.1007/s11785-024-01574-6 | MR 4782214 | Zbl 07898612
[13] J. Qin: Semi-commutants of Toeplitz operators on the Fock-Sobolev space. To appear in Indian J. Pure. Appl. Math. DOI 10.1007/s13226-024-00605-4
[14] D. Zheng: Commuting Toeplitz operators with pluriharmonic symbols. Trans. Am. Math. Soc. 350 (1998), 1595-1618. DOI 10.1090/S0002-9947-98-02051-0 | MR 1443898 | Zbl 0998.47017

Affiliations:   Jie Qin, Youqi Liu (corresponding author), School of Mathematics and Statistics, Chongqing Technology and Business University, No.19, Xuefu Ave, Nanan District, Chongqing, 400067, P. R. China, e-mail: qinjie24520@163.com, yqliu2021@163.com


 
PDF available at: