Czechoslovak Mathematical Journal, first online, pp. 1-18


On $w$-universal injective modules and their applications in commutative rings

Dechuan Zhou, Hwankoo Kim, Wei Zhao, Kui Hu

Received December 4, 2024.   Published online May 5, 2025.

Abstract:  Let $R$ be a commutative ring and $w$ be the $w$-operation on $R$. We introduce the concept of $w$-universal injective modules and establish their fundamental properties. It is shown that the product of $E(R/{\frak m})$, where ${\frak m}$ ranges over maximal $w$-ideals of $R$, is a $w$-universal injective $w$-module over $R$, albeit not necessarily a universal injective $R$-module. As applications, we characterize $w$-IF rings and $w$-coherent rings using $w$-universal injective modules. Specifically, we demonstrate that $R$ is a $w$-IF ring if and only if $R$ is $w$-coherent and $E(R/{\frak m})$ is a flat $R$-module for every ${\frak m} \in w \text{-Max}(R)$. These results extend existing results and provide deeper insights into the structure of $w$-modules.
Keywords:  $w$-universal injective; $w$-flat module; $w$-IF ring; $w$-coherent ring
Classification MSC:  13C99, 13A15

PDF available at:  Institute of Mathematics CAS

References:
[1] H. Kim: Module-theoretic characterizations of $t$-linkative domains. Commun. Algebra 36 (2008), 1649-1670. DOI 10.1080/00927870701872513 | MR 2420087 | Zbl 1146.13001
[2] E. Matlis: Reflexive domains. J. Algebra 8 (1968), 1-33. DOI 10.1016/0021-8693(68)90031-8 | MR 0220713 | Zbl 0191.32301
[3] E. Matlis: Commutative coherent rings. Can. J. Math. 34 (1982), 1240-1244. DOI 10.4153/CJM-1982-085-2 | MR 0678666 | Zbl 0518.13011
[4] E. Matlis: Commutative semi-coherent and semi-regular rings. J. Algebra 95 (1985), 343-372. DOI 10.1016/0021-8693(85)90108-5 | MR 0801272 | Zbl 0596.13014
[5] F. Wang: Finitely presented type modules and $w$-coherent rings. J. Sichuan Normal Univ., Nat. Sci. 33 (2010), 1-9. (In Chinese.) DOI 10.3969/j.issn.1001-8395.2010.01.001 | Zbl 1240.13021
[6] F. Wang, H. Kim: Foundations of Commutative Rings and Their Modules. Algebra and Applications 22. Springer, Singapore (2016). DOI 10.1007/978-981-10-3337-7 | MR 3587977 | Zbl 1367.13001
[7] F. Wang, H. Kim: Relative FP-injective modules and relative IF rings. Commun. Algebra 49 (2021), 3552-3582. DOI 10.1080/00927872.2021.1900861 | MR 4283167 | Zbl 1510.13004
[8] F. Wang, L. Qiao: A homological characterization of Krull domains. II. Commun. Algebra 47 (2019), 1917-1929. DOI 10.1080/00927872.2018.1524007 | MR 3977710 | Zbl 1437.13029
[9] F. Wang, L. Qiao: Two applications of Nagata rings and modules. J. Algebra Appl. 19 (2020), Article ID 2050115, 15 pages. DOI 10.1142/S0219498820501157 | MR 4120092 | Zbl 1440.13069
[10] H. Yin, F. Wang, X. Zhu, Y. Chen: $w$-modules over commutative rings. J. Korean Math. Soc. 48 (2011), 207-222. DOI 10.4134/JKMS.2011.48.1.207 | MR 2778002 | Zbl 1206.13005
[11] X. Zhang, F. Wang: On characterizations of $w$-coherent rings. II. Commun. Algebra 49 (2021), 3926-3940. DOI 10.1080/00927872.2021.1909607 | MR 4290119 | Zbl 1478.13016
[12] X. Zhang, F. Wang, W. Qi: On characterizations of $w$-coherent rings. Commun. Algebra 48 (2020), 4681-4697. DOI 10.1080/00927872.2020.1769121 | MR 4142066 | Zbl 1448.13020
[13] D. C. Zhou, F. G. Wang: The direct and inverse limits of $w$-modules. Commun. Algebra 44 (2016), 2495-2500. DOI 10.1080/00927872.2015.1053907 | MR 3492169 | Zbl 1347.13006

Affiliations:   Dechuan Zhou, School of Mathematics and Physics, Southwest University of Science and Technology, Mianyang 621010, P. R. China, e-mail: zdechuan11119@163.com; Hwankoo Kim (corresponding author), Division of Computer Engineering, Hoseo University, Asan 31499, Republic of Korea, e-mail: hkkim@hoseo.edu; Wei Zhao, Department of Mathematics, Aba Teachers' University, Aba 623002, P. R. China, e-mail: zw9c248@163.com; Kui Hu, School of Mathematics and Physics, Southwest University of Science and Technology, Mianyang 621010, P. R. China, e mail: hukui200418@163.com


 
PDF available at: