References: [1] T. S. Blyth, J. Fang, L.-B. Wang: The strong endomorphism kernel property in distributive double p-algebras. Sci. Math. Jpn. 76 (2013), 227-234. MR 3330070 | Zbl 1320.06009 [2] T. S. Blyth, H. J. Silva: The strong endomorphism kernel property in Ockham algebras. Commun. Algebra 36 (2008), 1682-1694. DOI 10.1080/00927870801937240 | MR 2424259 | Zbl 1148.06005 [3] G. Fang, J. Fang: The strong endomorphism kernel property in distributive p-algebras. Southeast Asian Bull. Math. 37 (2013), 491-497. MR 3134913 | Zbl 1299.06017 [4] J. Fang, Z.-J. Sun: Semilattices with the strong endomorphism kernel property. Algebra Univers. 70 (2013), 393-401. DOI 10.1007/s00012-013-0254-z | MR 3127981 | Zbl 1305.06004 [5] J. Guričan: Strong endomorphism kernel property for Brouwerian algebras. JP J. Algebra Number Theory Appl. 36 (2015), 241-258. DOI 10.17654/JPANTAJun2015_241_258 | Zbl 1333.06025 [6] J. Guričan, M. Ploščica: The strong endomorphism kernel property for modular p-algebras and for distributive lattices. Algebra Univers. 75 (2016), 243-255. DOI 10.1007/s00012-016-0370-7 | MR 3515400 | Zbl 1348.06008 [7] D. Jakubíková-Studenovská, J. Pócs: Monounary Algebras. Pavol Jozef Šafárik University, Košice (2009). Zbl 1181.08001 [8] R. N. McKenzie, G. F. McNulty, W. F. Taylor: Algebras, Lattices, Varieties. Vol. 1. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advance Books & Software XII. Monterey, California (1987). MR 0883644 | Zbl 0611.08001
Affiliations: Emília Halušková, Mathematical Institute, Slovak Academy of Sciences, Grešákova 1389/6, 040 01 Košice, Slovak Republic, e-mail: ehaluska@saske.sk