Mathematica Bohemica, Vol. 144, No. 2, pp. 203-220, 2019


Existence of solutions of generalized fractional differential equation with nonlocal initial condition

Sandeep P. Bhairat, Dnyanoba-Bhaurao Dhaigude

Received December 7, 2017.   Published online September 5, 2018.

Abstract:  This paper is devoted to studying the existence of solutions of a nonlocal initial value problem involving generalized Katugampola fractional derivative. By using fixed point theorems, the results are obtained in weighted space of continuous functions. Illustrative examples are also given.
Keywords:  fractional derivative; fractional integral; existence of solution; fractional differential equation; fixed point theorem
Classification MSC:  26A33, 34A08, 34A12, 47H10


References:
[1] S. Abbas, M. Benchohra, J.-E. Lagreg, Y. Zhou: A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability. Chaos Solitons Fractals 102 (2017), 47-71. DOI 10.1016/j.chaos.2017.03.010 | MR 3671994 | Zbl 1374.34004
[2] R. P. Agarwal, M. Benchohra, S. Hamani: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta. Appl. Math. 109 (2010), 973-1033. DOI 10.1007/s10440-008-9356-6 | MR 2596185 | Zbl 1198.26004
[3] R. L. Bagley, P. J. Torvik: A different approach to the analysis of viscoelastically damped structures. AIAA J. 21 (1983), 741-748. DOI 10.2514/3.8142 | Zbl 0514.73048 |
[4] R. L. Bagley, P. J. Torvik: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27 (1983), 201-210. DOI 10.1122/1.549724 | Zbl 0515.76012 |
[5] R. L. Bagley, P. J. Torvik: On the appearance of the fractional derivative in the behavior of real material. J. Appl. Mech. 51 (1984), 294-298. DOI 10.1115/1.3167615 | Zbl 1203.74022 |
[6] S. P. Bhairat: New approach to existence of solution of weighted Cauchy-type problem. Available at http://arxiv.org/abs/1808.03067 (2018), 10 pages.
[7] S. P. Bhairat, D. B. Dhaigude: Existence and stability of fractional differential equations involving generalized Katugampola derivative. Available at https://arxiv.org/abs/1709.08838 (2017), 15 pages.
[8] C. D. Chitalkar-Dhaigude, S. P. Bhairat, D. B. Dhaigude: Solution of fractional differential equations involving Hilfer fractional derivative: Method of successive approximations. Bull. Marathwada Math. Soc. 18 (2017), 1-13.
[9] D. B. Dhaigude, S. P. Bhairat: Existence and continuation of solutions of Hilfer fractional differential equations. Available at http://arxiv.org/abs/1704.02462v1 (2017), 18 pages.
[10] D. B. Dhaigude, S. P. Bhairat: Ulam type stability for nonlinear implicit fractional differential equations. Progress in Nonlinear Dynamics and Chaos 6 (2018), 29-38. DOI 10.22457/pindac.v6n1a4
[11] D. B. Dhaigude, S. P. Bhairat: On existence and approximation of solution of nonlinear Hilfer fractional differential equations. (to appear) in Int. J. Pure Appl. Math. Available at http://arxiv.org/abs/1704.02464 (2017), 9 pages.
[12] D. B. Dhaigude, S. P. Bhairat: Existence and uniqueness of solution of Cauchy-type problem for Hilfer fractional differential equations. Commun. Appl. Anal. 22 (2017), 121-134.
[13] D. B. Dhaigude, S. P. Bhairat: Local existence and uniqueness of solutions for Hilfer-Hadamard fractional differential problem. Nonlinear Dyn. Syst. Theory 18 (2018), 144-153. MR 3820828
[14] K. M. Furati, M. D. Kassim, N.-E. Tatar: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 64 (2012), 1616-1626. DOI 10.1016/j.camwa.2012.01.009 | MR 2960788 | Zbl 1268.34013
[15] K. M. Furati, N.-E. Tatar: An existence result for a nonlocal fractional differential problem. J. Fractional Calc. 26 (2004), 43-51. MR 2096756 | Zbl 1101.34001
[16] F. M. Gaafar: Continuous and integrable solutions of a nonlinear Cauchy problem of fractional order with nonlocal conditions. J. Egypt. Math. Soc. 22 (2014), 341-347. DOI 10.1016/j.joems.2013.12.008 | MR 3260773 | Zbl 1306.34007
[17] R. Hilfer: Applications of Fractional Calculus in Physics. World Scientific, London (2000). DOI 10.1142/9789812817747 | MR 1890104 | Zbl 0998.26002
[18] R. Hilfer: Experimental evidence for fractional time evolution in glass forming materials. Chemical Physics 284 (2002), 399-408. DOI 10.1016/S0301-0104(02)00670-5
[19] M. D. Kassim, N.-E. Tatar: Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative. Abstr. Appl. Anal. 2013 (2013), Article ID 605029, 12 pages. DOI 10.1155/2013/605029 | MR 3139483
[20] U. N. Katugampola: New approach to a generalized fractional integral. Appl. Math. Comput. 218 (2011), 860-865. DOI 10.1016/j.amc.2011.03.062 | MR 2831322 | Zbl 1231.26008
[21] U. N. Katugampola: A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6 (2014), 1-15. MR 3298307 | Zbl 1317.26008
[22] U. N. Katugampola: Existence and uniqueness results for a class of generalized fractional differenital equations. Available at https://arxiv.org/abs/1411.5229 (2016).
[23] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). DOI 10.1016/s0304-0208(06)x8001-5 | MR 2218073 | Zbl 1092.45003
[24] F. Mainardi: Fractional Calculus and Waves in Linear Viscoelastisity. An Introduction to Mathematical Models. World Scientific, Hackensack (2010). DOI 10.1142/9781848163300 | MR 2676137 | Zbl 1210.26004
[25] D. S. Oliveira, E. Capelas de Oliveira: Hilfer-Katugampola fractional derivative. Available at https://arxiv.org/abs/1705.07733 (2017).
[26] I. Podlubny: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering 198. Academic Press, San Diego (1999). MR 1658022 | Zbl 0924.34008
[27] A. Y. A. Salamooni, D. D. Pawar: Hilfer-Hadamard-type fractional differential equation with Cauchy-type problem. Available at https://arxiv.org/abs/1802.07483 (2018), 18 pages.
[28] J. Wang, Y. Zhang: Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Appl. Math. Comput. 266 (2015), 850-859. DOI 10.1016/j.amc.2015.05.144 | MR 3377602

Affiliations:   Sandeep P. Bhairat (corresponding author), Department of Mathematics, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400 019, India, e-mail: sp.bhairat@ictmumbai.edu.in; Dnyanoba-Bhaurao Dhaigude, Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, University Campus, Near Soneri Mahal, Jaisingpura, Aurangabad 431 004, India


 
PDF available at: