Mathematica Bohemica, Vol. 146, No. 4, pp. 483-511, 2021


Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales

Tatiana Danielsson, Pernilla Johnsen

Received June 13, 2019.   Published online March 3, 2021.

Abstract:  In this paper we establish compactness results of multiscale and very weak multiscale type for sequences bounded in $L^2(0,T;H_0^1(\Omega))$, fulfilling a certain condition. We apply the results in the homogenization of the parabolic partial differential equation $\varepsilon^p\partial_tu_{\varepsilon}(x,t) -\nabla\cdot( a( x\varepsilon^{-1} ,x\varepsilon^{-2},t\varepsilon^{-q},t\varepsilon^{-r}) \nabla u_{\varepsilon}(x,t) ) = f(x,t) $, where $0<p<q<r$. The homogenization result reveals two special phenomena, namely that the homogenized problem is elliptic and that the matching for which the local problem is parabolic is shifted by $p$, compared to the standard matching that gives rise to local parabolic problems.
Keywords:  homogenization; parabolic problem; multiscale convergence; very weak multiscale convergence; two-scale convergence
Classification MSC:  35B27, 35K20


References:
[1] G. Allaire, M. Briane: Multiscale convergence and reiterated homogenisation. Proc. R. Soc. Edinb., Sect. A 126 (1996), 297-342. DOI 10.1017/S0308210500022757 | MR 1386865 | Zbl 0866.35017
[2] G. Allaire, A. Piatnitski: Homogenization of nonlinear reaction-diffusion equation with a large reaction term. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 56 (2010), 141-161. DOI 10.1007/s11565-010-0095-z | MR 2646529 | Zbl 1205.35019
[3] A. Bensoussan, J.-L. Lions, G. Papanicolaou: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and Its Applications 5. North-Holland Publishing, Amsterdam (1978). DOI 10.1016/s0168-2024(08)x7015-8 | MR 0503330 | Zbl 0404.35001
[4] T. Danielsson, P. Johnsen: Homogenization of the heat equation with a vanishing volumetric heat capacity. Available at https://arxiv.org/abs/1809.11019 (2018), 14 pages.
[5] T. Danielsson, P. Johnsen: Homogenization of the heat equation with a vanishing volumetric heat capacity. Progress in Industrial Mathematics at ECMI 2018 Mathematics in Industry 30. Springer, Cham (2019), 343-349. DOI 10.1007/978-3-030-27550-1_43
[6] H. Douanla, J. L. Woukeng: Homogenization of reaction-diffusion equations in fractured porous media. Electron. J. Differ. Equ. 2015 (2015), Article ID 253, 23 pages. MR 3414107 | Zbl 1336.35046
[7] L. Flodén, A. Holmbom, M. Olsson Lindberg: A strange term in the homogenization of parabolic equations with two spatial and two temporal scales. J. Funct. Spaces Appl. 2012 (2012), Article ID 643458, 9 pages. DOI 10.1155/2012/643458 | MR 2875184 | Zbl 1242.35030
[8] L. Flodén, A. Holmbom, M. Olsson, J. Persson: Very weak multiscale convergence. Appl. Math. Lett. 23 (2010), 1170-1173. DOI 10.1016/j.aml.2010.05.005 | MR 2665589 | Zbl 1198.35023
[9] L. Flodén, A. Holmbom, M. Olsson Lindberg, J. Persson: A note on parabolic homogenization with a mismatch between the spatial scales. Abstr. Appl. Anal. 2013 (2013), Article ID 329704, 6 pages. DOI 10.1155/2013/329704 | MR 3111807 | Zbl 1293.35027
[10] L. Flodén, A. Holmbom, M. Olsson Lindberg, J. Persson: Homogenization of parabolic equations with an arbitrary number of scales in both space and time. J. Appl. Math. 2014 (2014), Article ID 101685, 16 pages. DOI 10.1155/2014/101685 | MR 3176810 | Zbl 1406.35140
[11] A. Holmbom: Homogenization of parabolic equations: An alternative approach and some corrector-type results. Appl. Math., Praha 42 (1997), 321-343. DOI 10.1023/A:1023049608047 | MR 1467553 | Zbl 0898.35008
[12] P. Johnsen, T. Lobkova: Homogenization of a linear parabolic problem with a certain type of matching between the microscopic scales. Appl. Math., Praha 63 (2018), 503-521. DOI 10.21136/AM.2018.0350-17 | MR 3870146 | Zbl 06986923
[13] T. Lobkova: Homogenization of linear parabolic equations with a certain resonant matching between rapid spatial and temporal oscillations in periodically perforated domains. Acta Math. Appl. Sin., Engl. Ser. 35 (2019), 340-358. DOI 10.1007/s10255-019-0810-1 | MR 3950176 | Zbl 1416.35032
[14] D. Lukkassen, G. Nguetseng, P. Wall: Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002), 35-86. MR 1912819 | Zbl 1061.35015
[15] G. Nguetseng: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989), 608-623. DOI 10.1137/0520043 | MR 0990867 | Zbl 0688.35007
[16] G. Nguetseng: Asymptotic analysis for a stiff variational problem arising in mechanics. SIAM J. Math. Anal. 21 (1990), 1394-1414. DOI 10.1137/0521078 | MR 1075584 | Zbl 0723.73011
[17] G. Nguetseng, J. L. Woukeng: $\Sigma$-convergence of nonlinear parabolic operators. Nonlinear Anal., Theory Methods Appl., Ser. A 66 (2007), 968-1004. DOI 10.1016/j.na.2005.12.035 | MR 2288445 | Zbl 1116.35011
[18] J. Persson: Homogenization of monotone parabolic problems with several temporal scales. Appl. Math., Praha 57 (2012), 191-214. DOI 10.1007/s10492-012-0013-z | MR 2984600 | Zbl 1265.35018
[19] J. Persson: Selected Topics in Homogenization: Doctoral Thesis. Department of Engineering and Sustainable Development, Mid Sweden University, Sundsvall (2012).
[20] N. Svanstedt, J. L. Woukeng: Periodic homogenization of strongly nonlinear reactiondiffusion equations with large reaction terms. Appl. Anal. 92 (2013), 1357-1378. DOI 10.1080/00036811.2012.678334 | MR 3169106 | Zbl 1271.35006
[21] E. Zeidler: Nonlinear Functional Analysis and Its Applications II/A: Linear Monotone Operators. Springer, New York (1990). DOI 10.1007/978-1-4612-0985-0 | MR 1033497 | Zbl 0684.47028

Affiliations:   Tatiana Danielsson, Pernilla Johnsen, Department of Mathematics and Science Education, Mid Sweden University, Kunskapens väg 8, S-83125 Östersund, Sweden, e-mail: tatiana.danielsson@miun.se, pernilla.johnsen@miun.se


 
PDF available at: