Mathematica Bohemica, Vol. 147, No. 2, pp. 237-270, 2022
On a system of nonlinear wave equations with the Kirchhoff-Carrier
and Balakrishnan-Taylor terms
Bui Duc Nam, Nguyen Huu Nhan, Le Thi Phuong Ngoc, Nguyen Thanh Long
Received May 19, 2020. Published online July 8, 2021.
Abstract: We study a system of nonlinear wave equations of the Kirchhoff-Carrier type containing a variant of the Balakrishnan-Taylor damping in nonlinear terms. By the linearization method together with the Faedo-Galerkin method, we prove the local existence and uniqueness of a weak solution. On the other hand, by constructing a suitable Lyapunov functional, a sufficient condition is also established to obtain the exponential decay of weak solutions.
Keywords: system of nonlinear wave equations of Kirchhoff-Carrier type; Balakrishnan-Taylor term; Faedo-Galerkin method; local existence; exponential decay
References: [1] A. V. Balakrishnan, L. W. Taylor: Distributed parameter nonlinear damping models for flight structures. Proceedings Damping 89. Report Number: WRDC-TR-89-3116 Volume II p. FDC-1 Flight Dynamics Laboratory, Chicago (1989), 9 pages.
[2] R. W. Bass, D. Zes: Spillover, nonlinearity and flexible structures. 4th NASA Workshop on Computational Control of Flexible Aerospace Systems NASA Conference Publication 10065. NASA. Langley Research Center, Hampton (1991), 1-14.
[3] S. Boulaaras: Polynomial decay rate for a new class of viscoelastic Kirchhoff equation related with Balakrishnan-Taylor dissipationand logarithmic source terms. Alexandria Eng. J. 59 (2020), 1059-1071. DOI 10.1016/j.aej.2019.12.013
[4] S. Boulaaras, A. Draifia, K. Zennir: General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping and logarithmic nonlinearity. Math. Methods Appl. Sci. 42 (2019), 4795-4814. DOI 10.1002/mma.5693 | MR 3992940 | Zbl 1428.35037
[5] S. Boulaaras, D. Ouchenane: General decay for a coupled Lamé system of nonlinear viscoelastic equations. Math. Methods Appl. Sci. 43 (2020), 1717-1735. DOI 10.1002/mma.5998 | MR 4067018 | Zbl 1445.35054
[6] N. Boumaza, S. Boulaaras: General decay for Kirchhoff type in viscoelasticity with not necessarily decreasing kernel. Math. Methods Appl. Sci. 41 (2018), 6050-6069. DOI 10.1002/mma.5117 | MR 3879228 | Zbl 1415.35038
[7] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho, J. A. Soriano: Existence and exponential decay for a Kirchhoff-Carrier model with viscosity. J. Math. Anal. Appl. 226 (1998), 40-60. DOI 10.1006/jmaa.1998.6057 | MR 1646453 | Zbl 0914.35081
[8] E. Emmrich, M. Thalhammer: A class of integro-differential equations incorporating nonlinear and nonlocal damping with applications in nonlinear elastodynamics: Existence via time discretization. Nonlinearity 24 (2011), 2523-2546. DOI 10.1088/0951-7715/24/9/008 | MR 2819935 | Zbl 1222.74021
[9] B. Feng, Y. H. Kang: Decay rates for a viscoelastic wave equation with Balakrishnan-Taylor and frictional dampings. Topol. Methods Nonlinear Anal. 54 (2019), 321-343. DOI 10.12775/tmna.2019.047 | MR 4018283 | Zbl 1437.35071
[10] M. M. Freitas: Pullback attractors for non-autonomous porous elastic system with nonlinear damping and sources terms. Math. Methods Appl. Sci. 43 (2020), 658-681. DOI 10.1002/mma.5921 | MR 4056455 | Zbl 1445.35078
[11] M. M. Freitas, M. L. Santos, J. A. Langa: Porous elastic system with nonlinear damping and sources terms. J. Differ. Equations 264 (2018), 2970-3051. DOI 10.1016/j.jde.2017.11.006 | MR 3737860 | Zbl 1394.35043
[12] E. H. Gomes Tavares, M. A. Jorge Silva, V. Narciso: Long-time dynamics of Balakrishnan-Taylor extensible beams. J. Dyn. Differ. Equations 32 (2020), 1157-1175. DOI 10.1007/s10884-019-09766-x | MR 4126844 | Zbl 1445.35060
[13] T. G. Ha: General decay rate estimates for viscoelastic wave equation with Balakrishnan-Taylor damping. Z. Angew. Math. Phys. 67 (2016), Article ID 32, 17 pages. DOI 10.1007/s00033-016-0625-3 | MR 3483881 | Zbl 1353.35064
[14] T. G. Ha: Stabilization for the wave equation with variable coefficients and Balakrishnan-Taylor damping. Taiwanese J. Math. 21 (2017), 807-817. DOI 10.11650/tjm/7828 | MR 3684388 | Zbl 1394.35044
[15] T. G. Ha: On the viscoelastic equation with Balakrishnan-Taylor damping and acoustic boundary conditions. Evol. Equ. Control Theory 7 (2018), 281-291. DOI 10.3934/eect.2018014 | MR 3810197 | Zbl 1415.35042
[16] J. Hao, Y. Hou: Stabilization for wave equation of variable coefficients with Balakrishnan-Taylor damping and source term. Comput. Math. Appl. 76 (2018), 2235-2245. DOI 10.1016/j.camwa.2018.08.023 | MR 3864576 | Zbl 1442.35267
[17] J. Hao, F. Wang: General decay rate for weak viscoelastic wave equation with Balakrishnan-Taylor damping and time-varying delay. Comput. Math. Appl. 78 (2019), 2632-2640. DOI 10.1016/j.camwa.2019.04.010 | MR 4001729 | Zbl 1443.35095
[18] S. Hyder Ali Muttaqi Shah: Some helical flows of a Burgers fluid with fractional derivative. Meccanica 45 (2010), 143-151. DOI 10.1007/s11012-009-9233-z | MR 2608341 | Zbl 1258.76026
[19] M. Jamil, C. Fetecau: Helical flows of Maxwell fluid between coaxial cylinders with given shear stresses on the boundary. Nonlinear Anal., Real World Appl. 11 (2010), 4302-4311. DOI 10.1016/j.nonrwa.2010.05.016 | MR 2683877 | Zbl 1201.35159
[20] J.-R. Kang, M. J. Lee, S. H. Park: Asymptotic stability for a viscoelastic problem with Balakrishnan-Taylor damping and time-varying delay. Comput. Math. Appl. 74 (2017), 1506-1515. DOI 10.1016/j.camwa.2017.06.033 | MR 3693349 | Zbl 1394.35280
[21] M. J. Lee, D. Kim, J. Y. Park: General decay of solutions for Kirchhoff type containing Balakrishnan-Taylor damping with a delay and acoustic boundary conditions. Bound. Value Probl. 2016 (2016), Article ID 173, 21 pages. DOI 10.1186/s13661-016-0679-3 | MR 3550421 | Zbl 1350.35129
[22] M. J. Lee, J. Y. Park, Y. H. Kang: Asymptotic stability of a problem with Balakrishnan-Taylor damping and a time delay. Comput. Math. Appl. 70 (2015), 478-487. DOI 10.1016/j.camwa.2015.05.004 | MR 3372039 | Zbl 1443.35098
[23] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod, Gauthier-Villars, Paris (1969). (In French.) MR 0259693 | Zbl 0189.40603
[24] N. T. Long, H. H. Ha, L. T. P. Ngoc, N. A. Triet: Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Commun. Pure Appl. Anal. 19 (2020), 455-492. DOI 10.3934/cpaa.2020023 | MR 4025953 | Zbl 1437.35468
[25] L. A. Medeiros: On some nonlinear perturbation of Kirchhoff-Carrier operator. Comput. Appl. Math. 13 (1994), 225-233. MR 1326759 | Zbl 0821.35100
[26] C. Mu, J. Ma: On a system of nonlinear wave equations with Balakrishnan-Taylor damping. Z. Angew. Math. Phys. 65 (2014), 91-113. DOI 10.1007/s00033-013-0324-2 | MR 3160626 | Zbl 1295.35309
[27] L. T. P. Ngoc, N. H. Nhan, B. D. Nam, N. T. Long: Existence and exponential decay of the Dirichlet problem for a nonlinear wave equation with the Balakrishnan-Taylor term. Lith. Math. J. 60 (2020), 225-247. DOI 10.1007/s10986-020-09469-7 | MR 4110669 | Zbl 1442.35243
[28] H. Qi, H. Jin: Unsteady helical flows of a generalized Oldroyd-B fluid with fractional derivative. Nonlinear Anal., Real World Appl. 10 (2009), 2700-2708. DOI 10.1016/j.nonrwa.2008.07.008 | MR 2523233 | Zbl 1162.76006
[29] M. L. Santos, D. S. Almeida Júnior: On porous-elastic system with localized damping. Z. Angew. Math. Phys. 67 (2016), Article ID 63, 18 pages. DOI 10.1007/s00033-016-0622-6 | MR 3494484 | Zbl 1351.35217
[30] R. E. Showalter: Hilbert space methods for partial differential equations. Electronic Journal of Differential Equations. Monograph 1. Southwest Texas State University, San Marcos (1994). MR 1302484 | Zbl 0991.35001
[31] N.-e. Tatar, A. Zaraï: Exponential stability and blow up for a problem with Balakrishnan-Taylor damping. Demonstr. Math. 44 (2011), 67-90. DOI 10.1515/dema-2013-0297 | MR 2796763 | Zbl 1227.35074
[32] N.-e. Tatar, A. Zaraï: On a Kirchhoff equation with Balakrishnan-Taylor damping and source term. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 18 (2011), 615-627. MR 2884753 | Zbl 1264.35244
[33] D. Tong, X. Zhang, X. Zhang: Unsteady helical flows of a generalized Oldroyd-B fluid. J. Non-Newton. Fluid Mech. 156 (2009), 75-83. DOI 10.1016/j.nonrwa.2008.07.008 | MR 2523233 | Zbl 1274.76136
[34] N. A. Triet, L. T. P. Ngoc, N. T. Long: On a nonlinear Kirchhoff-Carrier wave equation associated with Robin conditions. Nonlinear Anal., Real World Appl. 11 (2010), 3363-3388. DOI 10.1016/j.nonrwa.2009.11.028 | MR 2683795 | Zbl 1207.35208
[35] A. Zaraï, N.-e. Tatar: Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping. Arch. Math., Brno 46 (2010), 157-176. MR 2735903 | Zbl 1240.35330
Affiliations: Bui Duc Nam, Department of Mathematics and Computer Science, University of Science, 227 Nguyen Van Cu St., Dist. 5, Ho Chi Minh City, Vietnam; Vietnam National University, Ho Chi Minh City, Vietnam, and Ho Chi Minh City University of Food Industry, 140 Le Trong Tan St., Tay Thanh Ward, Tan Phu Dist., Ho Chi Minh City, Vietnam, e-mail: nambd@hufi.edu.vn; Nguyen Huu Nhan, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh St., Dist. 4, Ho Chi Minh City, Vietnam; Department of Mathematics and Computer Science, University of Science, 227 Nguyen Van Cu St., Dist. 5, Ho Chi Minh City, Vietnam, and Vietnam National University, Ho Chi Minh City, Vietnam, e-mail: huunhandn@gmail.com; Le Thi Phuong Ngoc, University of Khanh Hoa, 01 Nguyen Chanh St., Nha Trang City, Vietnam; Department of Mathematics and Computer Science, University of Science, 227 Nguyen Van Cu St., Dist. 5, Ho Chi Minh City, Vietnam, and Vietnam National University, Ho Chi Minh City, Vietnam, e-mail: ngoc1966@gmail.com; Nguyen Thanh Long (corresponding author), Department of Mathematics and Computer Science, University of Science, 227 Nguyen Van Cu St., Dist. 5, Ho Chi Minh City, Vietnam, and Vietnam National University, Ho Chi Minh City, Vietnam, e-mail: longnt2@gmail.com