Mathematica Bohemica, Vol. 147, No. 1, pp. 33-49, 2022


On the Nehari manifold for a logarithmic fractional Schrödinger equation with possibly vanishing potentials

Cong Nhan Le, Xuan Truong Le

Received September 29, 2019.   Published online March 23, 2021.

Abstract:  We study a class of logarithmic fractional Schrödinger equations with possibly vanishing potentials. By using the fibrering maps and the Nehari manifold we obtain the existence of at least one nontrivial solution.
Keywords:  Nehari manifold; fibrering maps; vanishing potential; logarithmic nonlinearity
Classification MSC:  35J60, 47J30


References:
[1] C. O. Alves, M. A. S. Souto: Existence of solutions for a class of elliptic equations in $\mathbb R^N$ with vanishing potentials. J. Differ. Equations 252 (2012), 5555-5568. DOI 10.1016/j.jde.2012.01.025  | MR 2902126 | Zbl 1250.35103
[2] C. O. Alves, M. A. S. Souto: Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity. J. Differ. Equations 254 (2013), 1977-1991. DOI 10.1016/j.jde.2012.11.013  | MR 3003299 | Zbl 1263.35076
[3] A. Ambrosetti, A. Malchiodi: Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge Studies in Advanced Mathematics 104. Cambridge University Press, Cambridge (2007). DOI 10.1017/CBO9780511618260 | MR 2292344 | Zbl 1125.47052
[4] A. Ambrosetti, Z.-Q. Wang: Nonlinear Schrödinger equations with vanishing and decaying potentials. Differ. Integral Equ. 18 (2005), 1321-1332. MR 2174974  | Zbl 1210.35087
[5] A. H. Ardila: Existence and stability of standing waves for nonlinear fractional Schrödinger equation with logarithmic nonlinearity. Nonlinear Anal., Theory Methods Appl. 155 (2017), 52-64. DOI 10.1016/j.na.2017.01.006  | MR 3631741 | Zbl 1368.35242
[6] V. Benci, C. R. Grisanti, A. M. Micheletti: Existence of solutions for the nonlinear Schrödinger equation with $V(\infty)=0$. Contributions to Nonlinear Analysis. Progress in Nonlinear Differential Equations and Their Applications 66. Birkhäuser, Basel (2006), 53-65. DOI 10.1007/3-7643-7401-2_4  | MR 2187794 | Zbl 1231.35225
[7] H. Berestycki, P.-L. Lions: Nonlinear scalar field equations. I: Existence of a ground state. Arch. Ration. Mech. Anal. 82 (1983), 313-345. DOI 10.1007/BF00250555  | MR 0695535 | Zbl 0533.35029
[8] I. Białynicki-Birula, J. Mycielski: Nonlinear wave mechanics. Ann. Phys. 100 (1976), 62-93. DOI 10.1016/0003-4916(76)90057-9  | MR 0426670
[9] K. J. Brown, Y. Zhang: The Nehari manifold for a semilinear elliptic problem with a sign-changing weight function. J. Differ. Equations 193 (2003), 481-499. DOI 10.1016/S0022-0396(03)00121-9  | MR 1998965 | Zbl 1074.35032
[10] L. Caffarelli: Non-local diffusions, drifts and games. Nonlinear Partial Differential Equations: The Abel symposium 2010. Abel Symposia 7. Springer, Berlin (2012), 37-52. DOI 10.1007/978-3-642-25361-4_3  | MR 3289358 | Zbl 1266.35060
[11] I. Campa, M. Degiovanni: Subdifferential calculus and nonsmooth critical point theory. SIAM J. Optim. 10 (2000), 1020-1048. DOI 10.1137/S1052623499353169  | MR 1777078 | Zbl 1042.49018
[12] T. Cazenave: Stable solutions of the logarithmic Schrödinger equation. Nonlinear Anal., Theory Methods Appl. 7 (1983), 1127-1140. DOI 10.1016/0362-546X(83)90022-6 | MR 0719365 | Zbl 0529.35068
[13] T. Cazenave, A. Haraux: Équations d'évolution avec non linéarité logarithmique. Ann. Fac. Sci. Toulouse, Math. (5) 2 (1980), 21-51. (In French.) DOI 10.5802/afst.543  | MR 0583902 | Zbl 0411.35051
[14] X. Chang: Ground state solutions of asymptotically linear fractional Schrödinger equations. J. Math. Phys. 54 (2013), Article ID 061504, 10 pages. DOI 10.1063/1.4809933  | MR 3112523 | Zbl 1282.81072
[15] W. Chen, S. Deng: The Nehari manifold for nonlocal elliptic operators involving concave-convex nonlinearities. Z. Angew. Math. Phys. 66 (2015), 1387-1400. DOI 10.1007/s00033-014-0486-6 | MR 3377693 | Zbl 1321.35253
[16] M. Cheng: Bound state for the fractional Schrödinger equation with unbounded potential. J. Math. Phys. 53 (2012), Article ID 043507, 7 pages. DOI 10.1063/1.3701574  | MR 2953151 | Zbl 1275.81030
[17] J.-N. Corvellec, M. Degiovanni, M. Marzocchi: Deformation properties for continuous functionals and critical point theory. Topol. Methods Nonlinear Anal. 1 (1993), 151-171. DOI 10.12775/TMNA.1993.012  | MR 1215263 | Zbl 0789.58021
[18] P. D'Avenia, E. Montefusco, M. Squassina: On the logarithmic Schrödinger equation. Commun. Contemp. Math. 16 (2014), Article ID 1350032, 15 pages. DOI 10.1142/S0219199713500326  | MR 3195154 | Zbl 1292.35259
[19] M. Degiovanni, S. Zani: Multiple solutions of semilinear elliptic equations with one-sided growth conditions. Math. Comput. Modelling 32 (2000), 1377-1393. DOI 10.1016/S0895-7177(00)00211-9 | MR 1800662 | Zbl 0970.35038
[20] E. Di Nezza, G. Palatucci, E. Valdinoci: Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012), 521-573. DOI 10.1016/j.bulsci.2011.12.004  | MR 2944369 | Zbl 1252.46023
[21] P. Drábek, S. I. Pohozaev: Positive solutions for the $p$-Laplacian: Application of the fibrering method. Proc. R. Soc. Edinb., Sect. A 127 (1997), 703-726. DOI 10.1017/S0308210500023787  | MR 1465416 | Zbl 0880.35045
[22] M. F. Furtado, L. A. Maia, E. S. Medeiros: Positive and nodal solutions for a nonlinear Schrödinger equation with indefinite potential. Adv. Nonlinear Stud. 8 (2008), 353-373. DOI 10.1515/ans-2008-0207  | MR 2402826 | Zbl 1168.35433
[23] E. F. Hefter: Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics. Phys. Rev. 32(A) (1985), 1201-1204. DOI 10.1103/PhysRevA.32.1201
[24] C. Ji, A. Szulkin: A logarithmic Schrödinger equation with asymptotic conditions on the potential. J. Math. Anal. Appl. 437 (2016), 241-254. DOI 10.1016/j.jmaa.2015.11.071 | MR 3451965 | Zbl 1333.35010
[25] S. Khoutir, H. Chen: Existence of infinitely many high energy solutions for a fractional Schrödinger equation in $\mathbb R^N$. Appl. Math. Lett. 61 (2016), 156-162. DOI 10.1016/j.aml.2016.06.001  | MR 3518463 | Zbl 1386.35444
[26] N. Laskin: Fractional quantum mechanics and Lévy path integrals. Phys. Lett., A 268 (2000), 298-305. DOI 10.1016/S0375-9601(00)00201-2  | MR 1755089 | Zbl 0948.81595
[27] N. Laskin: Fractional Schrödinger equation. Phys. Rev. E (3) 66 (2002), Article ID 056108, 7 pages. DOI 10.1103/PhysRevE.66.056108  | MR 1948569
[28] K. Perera, M. Squassina, Y. Yang: Critical fractional $p$-Laplacian problems with possibly vanishing potentials. J. Math. Anal. Appl. 433 (2016), 818-831. DOI 10.1016/j.jmaa.2015.08.024  | MR 3398738 | Zbl 1403.35319
[29] S. Secchi: Ground state solutions for nonlinear fractional Schrödinger equations in $\mathbb R^N$. J. Math. Phys. 54 (2013), Article ID 031501, 17 pages. DOI 10.1063/1.4793990  | MR 3059423 | Zbl 1281.81034
[30] X. Shang, J. Zhang: Ground states for fractional Schrödinger equations with critical growth. Nonlinearity 27 (2014), 187-207. DOI 10.1088/0951-7715/27/2/187  | MR 3153832 | Zbl 1287.35027
[31] X. Shang, J. Zhang, Y. Yang: On fractional Schrödinger equation in $\mathbb R^N$ with critical growth. J. Math. Phys. 54 (2013), Article ID 121502, 20 pages. DOI 10.1063/1.4835355 | MR 3156081 | Zbl 1290.35251
[32] M. Squassina, A. Szulkin: Multiple solutions to logarithmic Schrödinger equations with periodic potential. Calc. Var. Partial Differ. Equ. 54 (2015), 585-597. DOI 10.1007/s00526-014-0796-8 | MR 3385171 | Zbl 1326.35358
[33] A. Szulkin: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986), 77-109. DOI 10.1016/S0294-1449(16)30389-4  | MR 0837231 | Zbl 0612.58011
[34] K. Teng: Multiple solutions for a class of fractional Schrödinger equations in $\mathbb R^N$. Nonlinear Anal., Real World Appl. 21 (2015), 76-86. DOI 10.1016/j.nonrwa.2014.06.008  | MR 3261580 | Zbl 1302.35415
[35] C. E. Torres Ledesma: Existence and symmetry result for fractional $p$-Laplacian in $\Bbb{R}^n$. Commun. Pure Appl. Anal. (2017), 16 99-113. DOI 10.3934/cpaa.2017004 | MR 3583517 | Zbl 1364.35426
[36] K. G. Zloshchastiev: Logarithmic nonlinearity in theories of quantum gravity: Origin of time and observational consequences. Grav. Cosmol. 16 (2010), 288-297. DOI 10.1134/S0202289310040067 | MR 2740900 | Zbl 1232.83044

Affiliations:   Cong Nhan Le (corresponding author), Faculty of Applied Sciences, Ho Chi Minh City University of Technology and Education, No 1 Vo Van Ngan Street, Linh Chieu Ward, Thu Duc District, Ho Chi Minh City, Vietnam, e-mail: nhanlc@hcmute.edu.vn; Xuan Truong Le, Department of Mathematics and Statistics, University of Economics Ho Chi Minh City, 59C Nguyen Dinh Chieu Street, District 3, Ho Chi Minh City, Vietnam, e-mail: lxuantruong@ueh.edu.vn


 
PDF available at: