Mathematica Bohemica, Vol. 148, No. 2, pp. 197-210, 2023


Monotone and cone preserving mappings on posets

Ivan Chajda, Helmut Länger

Received February 25, 2021.   Published online May 16, 2022.

Abstract:  We define several sorts of mappings on a poset like monotone, strictly monotone, upper cone preserving and variants of these. Our aim is to study in which posets some of these mappings coincide. We define special mappings determined by two elements and investigate when these are strictly monotone or upper cone preserving. If the considered poset is a semilattice then its monotone mappings coincide with semilattice homomorphisms if and only if the poset is a chain. Similarly, we study posets which need not be semilattices but whose upper cones have a minimal element. We extend this investigation to posets that are direct products of chains or an ordinal sum of an antichain and a finite chain. We characterize equivalence relations induced by strongly monotone mappings and show that the quotient set of a poset by such an equivalence relation is a poset again.
Keywords:  poset; directed poset; semilattice; chain; monotone; strictly monotone; upper cone preserving; strictly upper cone preserving; strongly upper cone preserving; ordinal sum; induced equivalence relation
Classification MSC:  06A11, 06A06, 06A12


References:
[1] L. R. Berrone: The homomorphism equation on semilattices. Aequationes Math. 94 (2020), 803-816. DOI 10.1007/s00010-020-00699-1 | MR 4145720 | Zbl 1448.39038
[2] I. Chajda: Homomorphisms of directed posets. Asian-Eur. J. Math. 1 (2008), 45-51. DOI 10.1142/S1793557108000059 | MR 2400299 | Zbl 1159.06002
[3] I. Chajda, M. Goldstern, H. Länger: A note on homomorphisms between products of algebras. Algebra Universalis 79 (2018), Paper No. 25, 7 pages. DOI 10.1007/s00012-018-0517-9 | MR 3788204 | Zbl 6904410
[4] I. Chajda, Š. Hošková: A characterization of cone preserving mappings of quasiordered sets. Miskolc Math. Notes 6 (2005), 147-152. DOI 10.18514/MMN.2005.107 | MR 2199159 | Zbl 1095.08001

Affiliations:   Ivan Chajda, Palacký University Olomouc, Faculty of Science, Department of Algebra and Geometry, 17. listopadu 12, 771 46 Olomouc, Czech Republic, e-mail: ivan.chajda@upol.cz; Helmut Länger, TU Wien, Fakultät für Mathematik und Geoinformation, Institut für Diskrete Mathematik und Geometrie, Wiedner Hauptstrasse 8-10, 1040 Wien, Austria, and Palacký University Olomouc, Faculty of Science, Department of Algebra and Geometry, 17. listopadu 12, 771 46 Olomouc, Czech Republic, e-mail: helmut.laenger@tuwien.ac.at


 
PDF available at: