Mathematica Bohemica, Vol. 148, No. 4, pp. 507-518, 2023


On perfect powers in $k$-generalized Pell sequence

Zafer Şiar, Refik Keskin, Elif Segah Öztaş

Received March 6, 2022.   Published online September 29, 2022.

Abstract:  Let $k\geq2$ and let $(P_n^{(k)})_{n\geq2-k}$ be the $k$-generalized Pell sequence defined by $P_n^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\cdots+P_{n-k}^{(k)}$ for $n\geq2$ with initial conditions $P_{-(k-2)}^{(k)}=P_{-(k-3)}^{(k)}=\cdots=P_{-1}^{(k)}=P_0^{(k)}=0,P_1^{(k)}=1$. In this study, we handle the equation $P_n^{(k)}=y^m$ in positive integers $n$, $m$, $y$, $k$ such that $k,y\geq2$, and give an upper bound on $n$. Also, we will show that the equation $P_n^{(k)}=y^m$ with $2\leq y\leq1000$ has only one solution given by $P_7^{(2)}=13^2$.
Keywords:  Fibonacci and Lucas numbers; exponential Diophantine equation; linear forms in logarithms; Baker's method
Classification MSC:  11B39, 11D61, 11J86

PDF available at:  Institute of Mathematics CAS

References:
[1] A. Baker, H. Davenport: The equations $3x^2-2 = y^2$ and $8x^2-7 = z^2$. Q. J. Math., Oxf. II. Ser. 20 (1969), 129-137. DOI 10.1093/qmath/20.1.129 | MR 0248079 | Zbl 0177.06802
[2] J. J. Bravo, C. A. Gómez, F. Luca: Powers of two as sums of two $k$-Fibonacci numbers. Miskolc Math. Notes 17 (2016), 85-100. DOI 10.18514/MMN.2016.1505 | MR 3527869 | Zbl 1389.11041
[3] J. J. Bravo, J. L. Herrera: Repdigits in generalized Pell sequences. Arch. Math., Brno 56 (2020), 249-262. DOI 10.5817/AM2020-4-249 | MR 4173077 | Zbl 07285963
[4] J. J. Bravo, J. L. Herrera, F. Luca: Common values of generalized Fibonacci and Pell sequences. J. Number Theory 226 (2021), 51-71. DOI 10.1016/j.jnt.2021.03.001 | MR 4239716 | Zbl 1471.11049
[5] J. J. Bravo, J. L. Herrera, F. Luca: On a generalization of the Pell sequence. Math. Bohem. 146 (2021), 199-213. DOI 10.21136/MB.2020.0098-19 | MR 4261368 | Zbl 07361099
[6] J. J. Bravo, F. Luca: Powers of two in generalized Fibonacci sequences. Rev. Colomb. Mat. 46 (2012), 67-79. MR 2945671 | Zbl 1353.11020
[7] Y. Bugeaud: Linear Forms in Logarithms and Applications. IRMA Lectures in Mathematics and Theoretical Physics 28. European Mathematical Society, Zürich (2018). DOI 10.4171/183 | MR 3791777 | Zbl 1394.11001
[8] Y. Bugeaud, M. Mignotte, S. Siksek: Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers. Ann. Math. (2) 163 (2006), 969-1018. DOI 10.4007/annals.2006.163.969 | MR 2215137 | Zbl 1113.11021
[9] J. H. E. Cohn: Square Fibonacci numbers, etc. Fibonacci Q. 2 (1964), 109-113. MR 0161819 | Zbl 0126.07201
[10] J. H. E. Cohn: Perfect Pell powers. Glasg. Math. J. 38 (1996), 19-20. DOI 10.1017/S0017089500031207 | MR 1373953 | Zbl 0852.11014
[11] B. M. M. de Weger: Algorithms for Diophantine Equations. CWI Tracts 65. Centrum voor Wiskunde en Informatica, Amsterdam (1989). MR 1026936 | Zbl 0687.10013
[12] A. Dujella, A. Pethő: A generalization of a theorem of Baker and Davenport. Q. J. Math., Oxf. II. Ser. 49 (1998), 291-306. DOI 10.1093/qmathj/49.3.291 | MR 1645552 | Zbl 0911.11018
[13] E. Kiliç, D. Taşci: The generalized Binet formula, representation and sums of the generalized order-$k$ Pell numbers. Taiwanese J. Math. 10 (2006), 1661-1670. DOI 10.11650/twjm/1500404581 | MR 2275152 | Zbl 1123.11005
[14] W. Ljunggren: Zur Theorie der Gleichung $x^2+1=Dy^4$. Avh. Norske Vid. Akad. Oslo 5 (1942), 1-27. (In German.) MR 0016375 | Zbl 0027.01103
[15] E. M. Matveev: An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II. Izv. Math. 64 (2000), 1217-1269 translation from Izv. Ross. Akad. Nauk, Ser. Mat. 64 (2000), 125-180. DOI 10.1070/IM2000v064n06ABEH000314 | MR 1817252 | Zbl 1013.11043
[16] A. Pethő: The Pell sequence contains only trivial perfect powers. Sets, Graphs and Numbers. Colloquia Mathematica Societatis János Bolyai 60. North Holland, Amsterdam (1992), 561-568. MR 1218218 | Zbl 0790.11021
[17] S. G. Sanchez, F. Luca: Linear combinations of factorials and $S$-units in a binary recurrence sequence. Ann. Math. Qué. 38 (2014), 169-188. DOI 10.1007/s40316-014-0025-z | MR 3283974 | Zbl 1361.11007
[18] Z. Şiar, R. Keskin: On perfect powers in $k$-generalized Pell-Lucas sequence. Available at https://arxiv.org/abs/2209.04190 (2022), 17 pages.
[19] Z. Wu, H. Zhang: On the reciprocal sums of higher-order sequences. Adv. Difference Equ. 2013 (2013), Article ID 189, 8 pages. DOI 10.1186/1687-1847-2013-189 | MR 3084191 | Zbl 1390.11042

Affiliations:   Zafer Şiar (corresponding author), Bingöl University, Mathematics Department, Bingöl, Turkey, e-mail: zsiar@bingol.edu.tr; Refik Keskin, Sakarya University, Mathematics Department, Sakarya, Turkey, e-mail: rkeskin@sakarya.edu.tr; Elif Segah Öztaş, Karamanoğlu Mehmetbey University, Mathematics Department, Karaman, Turkey, e-mail: esoztas@kmu.edu.tr


 
PDF available at: