Mathematica Bohemica, Vol. 148, No. 2, pp. 255-282, 2023


Existence of renormalized solutions for some degenerate and non-coercive elliptic equations

Youssef Akdim, Mohammed Belayachi, Hassane Hjiaj

Received May 4, 2021.   Published online June 23, 2022.

Abstract:  This paper is devoted to the study of some nonlinear degenerated elliptic equations, whose prototype is given by $-{\rm div}( b(|u|)|\nabla u|^{p-2}\nabla u) + d(|u|)|\nabla u|^p = f - {\rm div}(c(x)|u|^{\alpha})$ in $\Omega$, $u = 0$ on $\partial\Omega$, where $\Omega$ is a bounded open set of $\mathbb{R}^N$ ($N\geq2$) with $1<p<N$ and $f \in L^1(\Omega),$ under some growth conditions on the function $b(\cdot)$ and $d(\cdot),$ where $c(\cdot)$ is assumed to be in $L^{\frc{N}{(p-1)}}(\Omega).$ We show the existence of renormalized solutions for this non-coercive elliptic equation, also, some regularity results will be concluded.
Keywords:  renormalized solution; nonlinear elliptic equation; non-coercive problem
Classification MSC:  35J60, 46E30, 46E35


References:
[1] A. Alvino, L. Boccardo, V. Ferone, L. Orsina, G. Trombetti: Existence results for nonlinear elliptic equations with degenerate coercivity. Ann. Mat. Pura Appl., IV. Ser. 182 (2003), 53-79. DOI 10.1007/s10231-002-0056-y | MR 1970464 | Zbl 1105.35040
[2] A. Alvino, V. Ferone, G. Trombetti: A priori estimates for a class of nonuniformly elliptic equations. Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 381-391. MR 1645729 | Zbl 0911.35025
[3] M. Ben Cheikh Ali, O. Guibé: Nonlinear and non-coercive elliptic problems with integrable data. Adv. Math. Sci. Appl. 16 (2006), 275-297. MR 2253236 | Zbl 1215.35066
[4] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J. L. Vazquez: An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22 (1995), 241-273. MR 1354907 | Zbl 0866.35037
[5] A. Bensoussan, L. Boccardo, F. Murat: On a nonlinear partial differential equation having natural growth terms and unbounded solution. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 5 (1988), 347-364. DOI 10.1016/S0294-1449(16)30342-0 | MR 0963104 | Zbl 0696.35042
[6] D. Blanchard, O. Guibé: Infinite valued solutions of non-uniformly elliptic problems. Anal. Appl., Singap. 2 (2004), 227-246. DOI 10.1142/S0219530504000369 | MR 2070448 | Zbl 1129.35370
[7] L. Boccardo, A. Dall'Aglio, L. Orsina: Existence and regularity results for some elliptic equations with degenerate coercivity. Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 51-81. MR 1645710 | Zbl 0911.35049
[8] L. Boccardo, T. Gallouet: Strongly nonlinear elliptic equations having natural growth terms and $L^1$ data. Nonlinear Anal., Theory Methods Appl. 19 (1992), 573-579. DOI 10.1016/0362-546X(92)90022-7 | MR 1183664 | Zbl 0795.35031
[9] G. Croce: The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity. Rend. Mat. Appl., VII. Ser. 27 (2007), 299-314. MR 2398428 | Zbl 1147.35043
[10] T. Del Vecchio, M. R. Posteraro: Existence and regularity results for nonlinear elliptic equations with measure data. Adv. Differ. Equ. 1 (1996), 899-917. MR 1392010 | Zbl 0856.35044
[11] F. Della Pietra: Existence results for non-uniformly elliptic equations with general growth in the gradient. Differ. Integral Equ. 21 (2008), 821-836. MR 2483336 | Zbl 1224.35117
[12] J. Droniou: Non-coercive linear elliptic problems. Potential Anal. 17 (2002), 181-203. DOI 10.1023/A:1015709329011 | MR 1908676 | Zbl 1161.35362
[13] J. Droniou: Global and local estimates for nonlinear noncoercive elliptic equations with measure data. Commun. Partial Differ. Equations 28 (2003), 129-153. DOI 10.1081/PDE-120019377 | MR 1974452 | Zbl 1094.35046
[14] O. Guibé, A. Mercaldo: Existence and stability results for renormalized solutions to noncoercive nonlinear elliptic equations with measure data. Potential Anal. 25 (2006), 223-258. DOI 10.1007/s11118-006-9011-7 | MR 2255346 | Zbl 1198.35072
[15] O. Guibé, A. Mercaldo: Existence of renormalized solutions to nonlinear elliptic equations with two lower order terms and measure data. Trans. Am. Math. Soc. 360 (2008), 643-669. DOI 10.1090/S0002-9947-07-04139-6 | MR 2346466 | Zbl 1156.35042
[16] C. Leone, A. Porretta: Entropy solutions for nonlinear elliptic equations in $L^1$. Nonlinear Anal., Theory Methods Appl. 32 (1998), 325-334. DOI 10.1016/S0362-546X(96)00323-9 | MR 1610574 | Zbl 1155.35352
[17] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod, Gauthier-Villars, Paris (1969). (In French.) MR 0259693 | Zbl 0189.40603
[18] C. Maderna, C. D. Pagani, S. Salsa: Quasilinear elliptic equations with quadratic growth in the gradient. J. Differ. Equations 97 (1992), 54-70. DOI 10.1016/0022-0396(92)90083-Y | MR 1161311 | Zbl 0785.35039
[19] F. Murat: Soluciones renormalizadas de EDP elipticas non lineales. Technical Report R93023, Laboratoire d'Analyse Numérique, Paris (1993). (In French.)
[20] A. Porretta: Nonlinear equations with natural growth terms and measure data. Electron. J. Differ. Equ. Conf. 09 (2002), 183-202. MR 1976695 | Zbl 1109.35341
[21] S. Segura de León: Existence and uniqueness for $L^1$ data of some elliptic equations with natural growth. Adv. Differ. Equ. 8 (2003), 1377-1408. MR 2016651 | Zbl 1158.35365
[22] C. Trombetti: Non-uniformly elliptic equations with natural growth in the gradient. Potential Anal. 18 (2003), 391-404. DOI 10.1023/A:1021884903872 | MR 1953268 | Zbl 1040.35010
[23] W. Zou: Existence of solutions for a class of porous medium type equations with a lower order terms. J. Inequal. Appl. 2015 (2015), Article ID 294, 23 pages. DOI 10.1186/s13660-015-0799-9 | MR 3399257 | Zbl 1336.35167

Affiliations:   Youssef Akdim, Mohammed Belayachi (corresponding author), Department of Mathematics, Laboratory LAMA, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, BP 1796 Atlas, Fez, Morocco, e-mail: youssef.akdim@usmba.ac.ma, mohammedbelayachi7@gmail.com; Hassane Hjiaj, Department of Mathematics, Faculty of Sciences Tetouan, University Abdelmalek Essaadi, Quartier M'haneche II, Avenue Palestine, BP 2121, Tetouan 93000, Morocco, e-mail: hjiajhassane@yahoo.fr


 
PDF available at: