Mathematica Bohemica, Vol. 148, No. 4, pp. 631-646, 2023


The unit groups of semisimple group algebras of some non-metabelian groups of order 144

Gaurav Mittal, Rajendra Kumar Sharma

Received May 10, 2022.   Published online December 19, 2022.

Abstract:  We consider all the non-metabelian groups $G$ of order 144 that have exponent either 36 or 72 and deduce the unit group $U(\mathbb{F}_qG)$ of semisimple group algebra $\mathbb{F}_qG$. Here, $q$ denotes the power of a prime, i.e., $q=p^r$ for $p$ prime and a positive integer $r$. Up to isomorphism, there are 6 groups of order 144 that have exponent either 36 or 72. Additionally, we also discuss how to simply obtain the unit groups of the semisimple group algebras of those non-metabelian groups of order 144 that are a direct product of two nontrivial groups. In all, this paper covers the unit groups of semisimple group algebras of 17 non-metabelian groups.
Keywords:  unit group; finite field; Wedderburn decomposition
Classification MSC:  16U60, 20C05

PDF available at:  Institute of Mathematics CAS

References:
[1] G. K. Bakshi, S. Gupta, I. B. S. Passi: The algebraic structure of finite metabelian group algebras. Commun. Algebra 43 (2015), 2240-2257. DOI 10.1080/00927872.2014.888566 | MR 3344186 | Zbl 1328.20004
[2] A. A. Bovdi, J. Kurdics: Lie properties of the group algebra and the nilpotency class of the group of units. J. Algebra 212 (1999), 28-64. DOI 10.1006/jabr.1998.7617 | MR 1670626 | Zbl 0936.16028
[3] C. Dietzel, G. Mittal: Summands of finite group algebras. Czech. Math. J. 71 (2021), 1011-1014. DOI 10.21136/CMJ.2020.0171-20 | MR 4339106 | Zbl 07442469
[4] R. A. Ferraz: Simple components of the center of $FG/J(FG)$. Commun. Algebra 36 (2008), 3191-3199. DOI 10.1080/00927870802103503 | MR 2441107 | Zbl 1156.16019
[5] S. Gupta, S. Maheshwary: Finite semisimple group algebra of a normally monomial group. Int. J. Algebra Comput. 29 (2019), 159-177. DOI 10.1142/S0218196718500674 | MR 3918058 | Zbl 1408.16021
[6] P. Hurley, T. Hurley: Codes from zero-divisors and units in group rings. Int. J. Inf. Coding Theory 1 (2009), 57-87. DOI 10.1504/IJICOT.2009.024047 | MR 2747648 | Zbl 1213.94194
[7] B. Hurley, T. Hurley: Group ring cryptography. Int. J. Pure Appl. Math. 69 (2011), 67-86. MR 2841625 | Zbl 1248.94071
[8] G. D. James: The Representation Theory of the Symmetric Groups. Lecture Notes in Mathematics 682. Springer, Berlin (1978). DOI 10.1007/BFb0067708 | MR 0513828 | Zbl 0393.20009
[9] M. Khan, R. K. Sharma, J. B. Srivastava: The unit group of $FS_4$. Acta Math. Hung. 118 (2008), 105-113. DOI 10.1007/s10474-007-6169-4 | MR 2378543 | Zbl 1156.16024
[10] R. Lidl, H. Niederreiter: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1994). DOI 10.1017/CBO9781139172769 | MR 1294139 | Zbl 0820.11072
[11] N. Makhijani, R. K. Sharma, J. B. Srivastava: The unit group of $\mathbb{F}_q[D_{30}]$. Serdica Math. J. 41 (2015), 185-198. MR 3363601 | Zbl 07407351
[12] N. Makhijani, R. K. Sharma, J. B. Srivastava: A note on the structure of $\mathbb{F}_{p^k}A_5/J(\mathbb{F}_{p^k}A_5)$. Acta Sci. Math. 82 (2016), 29-43. DOI 10.14232/actasm-014-311-2 | MR 3526335 | Zbl 1399.16065
[13] G. Mittal, S. Kumar, S. Kumar: A quantum secure ID-based cryptographic encryption based on group rings. Sādhanā 47 (2022), Article ID 35, 16 pages. DOI 10.1007/s12046-022-01806-5 | MR 4390710
[14] G. Mittal, R. K. Sharma: On unit group of finite group algebras of non-metabelian groups up to order 72. Math. Bohem. 146 (2021), 429-455. DOI 10.21136/MB.2021.0116-19 | MR 4336549 | Zbl 07442512
[15] G. Mittal, R. K. Sharma: On unit group of finite semisimple group algebras of non-metabelian groups of order 108. J. Algebra Comb. Discrete Struct. Appl. 8 (2021), 59-71. DOI 10.13069/jacodesmath.935938 | MR 4263329 | Zbl 07497651
[16] G. Mittal, R. K. Sharma: Computation of Wedderburn decomposition of groups algebras from their subalgebra. Bull. Korean Math. Soc. 59 (2022), 781-787. DOI 10.4134/BKMS.b210478 | MR 4432441 | Zbl 07556746
[17] G. Mittal, R. K. Sharma: Unit group of semisimple group algebras of some non-metabelian groups of order 120. Asian-Eur. J. Math. 15 (2022), Article ID 2250059, 11 pages. DOI 10.1142/S1793557122500590 | MR 4404211 | Zbl 07539570
[18] G. Mittal, R. K. Sharma: Wedderburn decomposition of a semisimple group algebra $\mathbb F_qG$ from a subalgebra of factor group of $G$. Int. Electron. J. Algebra 32 (2022), 91-100. DOI 10.24330/ieja.1077582 | MR 4472725 | Zbl 07561775
[19] G. Pazderski: The orders to which only belong metabelian groups. Math. Nachr. 95 (1980), 7-16. DOI 10.1002/mana.19800950102 | MR 0592878 | Zbl 0468.20018
[20] S. Perlis, G. L. Walker: Abelian group algebras of finite order. Trans. Am. Math. Soc. 68 (1950), 420-426. DOI 10.1090/S0002-9947-1950-0034758-3 | MR 0034758 | Zbl 0038.17301
[21] C. Polcino Milies, S. K. Sehgal: An Introduction to Group Rings. Algebras and Applications 1. Kluwer Academic, Dordrecht (2002). MR 1896125 | Zbl 0997.20003
[22] R. K. Sharma, G. Mittal: On the unit group of semisimple group algebra $\mathbb{F}_qSL(2, \mathbb{Z}_5)$. Math. Bohem. 147 (2022), 1-10. DOI 10.21136/MB.2021.0104-20 | MR 4387464 | Zbl 07547237

Affiliations:   Gaurav Mittal (corresponding author), Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee - 247 667, Uttarakhand, India, e-mail: gmittal@ma.iitr.ac.in; Rajendra Kumar Sharma, Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 110016, India, e-mail: rksharmaiitd@gmail.com


 
PDF available at: