Mathematica Bohemica, Vol. 148, No. 3, pp. 349-408, 2023


Null controllability of a coupled model in population dynamics

Younes Echarroudi

Received June 9, 2021.   Published online August 4, 2022.

Abstract:  We are concerned with the null controllability of a linear coupled population dynamics system or the so-called prey-predator model with Holling type I functional response of predator wherein both equations are structured in age and space. It is worth mentioning that in our case, the space variable is viewed as the "gene type" of population. The studied system is with two different dispersion coefficients which depend on the gene type variable and degenerate in the boundary. This system will be governed by one control force. To reach our goal, we develop first a Carleman type inequality for its adjoint system and consequently the pertinent observability inequality. Note that such a system is obtained via the original paradigm using the Lagrangian method. Afterwards, with the help of a cost function we will be able to deduce the existence of a control acting on a subset of the gene type domain and which steers both populations of a certain class of age to extinction in a finite time.
Keywords:  degenerate population dynamics model; Lotka-Volterra system; Carleman estimate; observability inequality; null controllability
Classification MSC:  35J70, 45K05, 92D25, 93B05, 93B07


References:
[1] B. Ainseba: Exact and approximate controllability of the age and space population dynamics structured model. J. Math. Anal. Appl. 275 (2002), 562-574. DOI 10.1016/S0022-247X(02)00238-X | MR 1943766 | Zbl 1005.92023
[2] B. Ainseba: Corrigendum to "Exact and approximate controllability of the age and space population dynamics structured model" (J. Math. Anal. Appl. 275 (2) (2002), 562-574). J. Math. Anal. Appl. 393 (2012), 328. DOI 10.1016/j.jmaa.2012.01.059 | MR 2921673 | Zbl 1260.92095
[3] B. Ainseba, S. Aniţa: Local exact controllability of the age-dependent population dynamics with diffusion. Abstr. Appl. Anal. 6 (2001), 357-368. DOI 10.1155/S108533750100063X | MR 1880930 | Zbl 0995.93008
[4] B. Ainseba, S. Aniţa: Internal exact controllability of the linear population dynamics with diffusion. Electron. J. Differ. Equ. 2004 (2004), Article ID 112, 11 pages. MR 2108883 | Zbl 1134.93311
[5] B. Ainseba, S. Aniţa: Internal stabilizability for a reaction-diffusion problem modeling a predator-prey system. Nonlinear Anal., Theory Methods Appl., Ser. A 61 (2005), 491-501. DOI 10.1016/j.na.2004.09.055 | MR 2126609 | Zbl 1072.35090
[6] B. Ainseba, Y. Echarroudi, L. Maniar: Null controllability of a population dynamics with degenerate diffusion. Differ. Integral Equ. 26 (2013), 1397-1410. MR 3129015 | Zbl 1313.35193
[7] B. Ainseba, M. Langlais: On a population dynamics control problem with age dependence and spatial structure. J. Math. Anal. Appl. 248 (2000), 455-474. DOI 10.1006/jmaa.2000.6921 | MR 1776023 | Zbl 0964.93045
[8] E. M. Ait Ben Hassi, F. Ammar Khodja, A. Hajjaj, L. Maniar: Null controllability of degenerate parabolic cascade systems. Port. Math. (N.S.) 68 (2011), 345-367. DOI 10.4171/PM/1895 | MR 2832802 | Zbl 1231.35103
[9] F. Alabau-Boussouira, P. Cannarsa, G. Fragnelli: Carleman estimates for degenerate parabolic operators with applications to null controllability. J. Evol. Equ. 6 (2006), 161-204. DOI 10.1007/s00028-006-0222-6 | MR 2227693 | Zbl 1103.35052
[10] S. Aniţa: Analysis and Control of Age-Dependent Population Dynamics. Mathematical Modelling: Theory and Applications 11. Kluwer Acadamic, Dordrecht (2000). DOI 10.1007/978-94-015-9436-3 | MR 1797596 | Zbl 0960.92026
[11] N. Apreutesei, G. Dimitriu: On a prey-predator reaction-diffusion system with Holling type III functional response. J. Comput. Appl. Math. 235 (2010), 366-379. DOI 10.1016/j.cam.2010.05.040 | MR 2677695 | Zbl 1205.65274
[12] V. Barbu, M. Iannelli, M. Martcheva: On the controllability of the Lotka-McKendrick model of population dynamics. J. Math. Anal. Appl. 253 (2001), 142-165. DOI 10.1006/jmaa.2000.7075 | MR 1804594 | Zbl 0961.92024
[13] I. Boutaayamou, Y. Echarroudi: Null controllability of population dynamics with interior degeneracy. Electron. J. Differ. Equ. 2017 (2017), Article ID 131, 21 pages. MR 3665593 | Zbl 1370.35183
[14] I. Boutaayamou, G. Fragnelli: A degenerate population system: Carleman estimates and controllability. Nonlinear Anal., Theory Methods Appl., Ser. A 195 (2020), Article ID 111742, 29 pages. DOI 10.1016/j.na.2019.111742 | MR 4052601 | Zbl 1435.35398
[15] I. Boutaayamou, J. Salhi: Null controllability for linear parabolic cascade systems with interior degeneracy. Electron. J. Differ. Equ. 2016 (2016), Article ID 305, 22 pages. MR 3604750 | Zbl 1353.35184
[16] T. Cabello, M. Gámez, Z. Varga: An improvement of the Holling type III functional response in entomophagous species model. J. Biol. Syst. 15 (2007), 515-524. DOI 10.1142/S0218339007002325 | Zbl 1146.92326
[17] M. Campiti, G. Metafune, D. Pallara: Degenerate self-adjoint evolution equations on the unit interval. Semigroup Forum 57 (1998), 1-36. DOI 10.1007/PL00005959 | MR 1621852 | Zbl 0915.47029
[18] P. Cannarsa, G. Fragnelli: Null controllability of semilinear degenerate parabolic equations in bounded domains. Electron. J. Differ. Equ. 2006 (2006), Article ID 136, 20 pages. MR 2276561 | Zbl 1112.35335
[19] P. Cannarsa, G. Fragnelli, D. Rocchetti: Null controllability of degenerate parabolic with drift. Netw. Heterog. Media 2 (2007), 695-715. DOI 10.3934/nhm.2007.2.695 | MR 2357764 | Zbl 1140.93011
[20] P. Cannarsa, G. Fragnelli, D. Rocchetti: Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form. J. Evol. Equ. 8 (2008), 583-616. DOI 10.1007/s00028-008-0353-34 | MR 2460930 | Zbl 1176.35108
[21] P. Cannarsa, G. Fragnelli, J. Vancostenoble: Linear degenerate parabolic equations in bounded domains: Controllability and observability. Systems, Control, Modeling and Optimization. IFIP International Federation for Information Processing 202. Springer, New York (2006), 163-173. DOI 10.1007/0-387-33882-9_15 | MR 2241704 | Zbl 1214.93021
[22] P. Cannarsa, G. Fragnelli, J. Vancostenoble: Regional controllability of semilinear degenerate parabolic equations in bounded domains. J. Math. Anal. Appl. 320 (2006), 804-818. DOI 10.1016/j.jmaa.2005.07.006 | MR 2225996 | Zbl 1177.93016
[23] P. Cannarsa, P. Martinez, J. Vancostenoble: Persistent regional null controllability for a class of degenerate parabolic equations. Commun. Pure Appl. Anal. 3 (2004), 607-635. DOI 10.3934/cpaa.2004.3.607 | MR 2106292 | Zbl 1063.35092
[24] P. Cannarsa, P. Martinez, J. Vancostenoble: Null controllability of degenerate heat equations. Adv. Differ. Equ. 10 (2005), 153-190. MR 2106129 | Zbl 1145.35408
[25] J. H. P. Dawes, M. O. Souza: A derivation of Holling's type I, II and III functional responses in predator-prey systems. J. Theor. Biol. 327 (2013), 11-22. DOI 10.1016/j.jtbi.2013.02.017 | MR 3046076 | Zbl 1322.92056
[26] Y. Echarroudi, L. Maniar: Null controllability of a model in population dynamics. Electron. J. Differ. Equ. 2014 (2014), Article ID 240, 20 pages. MR 3291740 | Zbl 06430755
[27] Y. Echarroudi, L. Maniar: Null controllability of a degenerate cascade model in population dynamics. Studies in Evolution Equations and Related Topics STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham (2021), 211-268. DOI 10.1007/978-3-030-77704-3_10 | Zbl 07464638
[28] G. Fragnelli: An age-dependent population equation with diffusion and delayed birth process. Int. J. Math. Math. Sci. 2005 (2005), 3273-3289. DOI 10.1155/IJMMS.2005.3273 | MR 2208054 | Zbl 1084.92029
[29] G. Fragnelli: Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete Contin. Dyn. Syst., Ser. S 6 (2013), 687-701. DOI 10.3934/dcdss.2013.6.687 | MR 3010677 | Zbl 1258.93025
[30] G. Fragnelli: Carleman estimates and null controllability for a degenerate population model. J. Math. Pures Appl. (9) 115 (2018), 74-126. DOI 10.1016/j.matpur.2018.01.003 | MR 3808342 | Zbl 1391.35238
[31] G. Fragnelli: Null controllability for a degenerate population model in divergence form via Carleman estimates. Adv. Nonlinear Anal. 9 (2020), 1102-1129. DOI 10.1515/anona-2020-0034 | MR 4019739 | Zbl 1427.35141
[32] G. Fragnelli, A. Idrissi, L. Maniar: The asymptotic behavior of a population equation with diffusion and delayed birth process. Discrete Contin. Dyn. Syst., Ser. B 7 (2007), 735-754. DOI 10.3934/dcdsb.2007.7.735 | MR 2291870 | Zbl 1211.35046
[33] G. Fragnelli, P. Martinez, J. Vancostenoble: Qualitative properties of a population dynamics system describing pregnancy. Math. Models Methods Appl. Sci. 15 (2005), 507-554. DOI 10.1142/S0218202505000455 | MR 2137524 | Zbl 1092.92037
[34] G. Fragnelli, D. Mugnai: Carleman estimates and observability inequalities for parabolic equations with interior degeneracy. Adv. Nonlinear Anal. 2 (2013), 339-378. DOI 10.1515/anona-2013-0015 | MR 3199737 | Zbl 1282.35101
[35] G. Fragnelli, D. Mugnai: Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations. Mem. Am. Math. Soc. 1146 (2016), 88 pages. DOI 10.1090/memo/1146 | MR 3498150 | Zbl 1377.93043
[36] G. Fragnelli, L. Tonetto: A population equation with diffusion. J. Math. Anal. Appl. 289 (2004), 90-99. DOI 10.1016/j.jmaa.2003.08.047 | MR 2020529 | Zbl 1109.34042
[37] A. V. Fursikov, O. Y. Imanuvilov: Controllability of Evolutions Equations. Lecture Notes Series, Seoul 34. Seoul National University, Seoul (1996). MR 1406566 | Zbl 0862.49004
[38] A. Hajjaj, L. Maniar, J. Salhi: Carleman estimates and null controllability of degenerate/singular parabolic systems. Electron. J. Differ. Equ. 2016 (2016), Article ID 292, 25 pages. MR 3578313 | Zbl 1353.35186
[39] N. Hegoburu, M. Tucsnak: Null controllability of the Lotka-Mckendrick system with spatial diffusion. Math. Control Relat. Fields 8 (2018), 707-720. DOI 10.3934/mcrf.2018030 | MR 3917460 | Zbl 1417.92131
[40] Y. Jia, J. Wu, H.-K. Xu: Positive solutions of a Lotka-Volterra competition model with cross-diffusion. Comput. Math. Appl. 68 (2014), 1220-1228. DOI 10.1016/j.camwa.2014.08.016 | MR 3272537 | Zbl 1367.92129
[41] A. Juska, L. Gouveia, J. Gabriel, S. Koneck: Negotiating bacteriological meat contamination standards in the US: The case of $ E. Coli$ O157:H7. Sociologia Ruralis 40 (2000), 249-271. DOI 10.1111/1467-9523.00146
[42] R. E. Kooij, A. Zegeling: A predator-prey model with Ivlev's functional response. J. Math. Anal. Appl. 198 (1996), 473-489. DOI 10.1006/jmaa.1996.0093 | MR 1376275 | Zbl 0851.34030
[43] M. Langlais: A nonlinear problem in age-dependent population diffusion. SIAM J. Math. Anal. 16 (1985), 510-529. DOI 10.1137/0516037 | MR 0783977 | Zbl 0589.92013
[44] B. Liu, Y. Zhang, L. Chen: Dynamics complexities of a Holling I predator-prey model concerning periodic biological and chemical control. Chaos Solitons Fractals 22 (2004), 123-134. DOI 10.1016/j.chaos.2003.12.060 | MR 2057553 | Zbl 1058.92047
[45] X. Liu, Q. Huang: The dynamics of a harvested predator-prey system with Holling type IV functional response. Biosystems 169-170 (2018), 26-39. DOI 10.1016/j.biosystems.2018.05.005
[46] A. Y. Mozorov: Emergence of Holling type III zooplankton functional response: Bringing together field evidence and mathematical modelling. J. Theor. Biol. 265 (2010), 45-54. DOI 10.1016/j.jtbi.2010.04.016 | MR 2981553 | Zbl 1406.92676
[47] L. Pavel: Classical solutions in Sobolev spaces for a class of hyperbolic Lotka-Volterra systems. SIAM J. Control Optim. 51 (2013), 2132-2151. DOI 10.1137/090767303 | MR 3053572 | Zbl 1275.35138
[48] R. Peng, J. Shi: Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case. J. Differ. Equations 247 (2009), 866-886. DOI 10.1016/j.jde.2009.03.008 | MR 2528495 | Zbl 1169.35328
[49] S. Piazzera: An age-dependent population equation with delayed birth process. Math. Methods Appl. Sci. 27 (2004), 427-439. DOI 10.1002/mma.462 | MR 2034234 | Zbl 1038.35145
[50] M. A. Pozio, A. Tesei: Degenerate parabolic problems in population dynamics. Japan J. Appl. Math. 2 (1985), 351-380. DOI 10.1007/BF03167082 | MR 0839335
[51] A. Pugliese, L. Tonetto: Well-posedness of an infinite system of partial differential equations modelling parasitic infection in age-structured host. J. Math. Anal. Appl. 284 (2003), 144-164. DOI 10.1016/S0022-247X(03)00295-6 | MR 1996124 | Zbl 1039.35130
[52] A. Rhandi, R. Schnaubelt: Asymptotic behaviour of a non-autonomous population equation with diffusion in $L^1$. Discrete Contin. Dyn. Syst. 5 (1999), 663-683. DOI 10.3934/dcds.1999.5.663 | MR 1696337 | Zbl 1002.92016
[53] J. Salhi: Null controllability for a coupled system of degenerate/singular parabolic equations in nondivergence form. Electron. J. Qual. Theory Differ. Equ. 2018 (2018), Article ID 31, 28 pages. DOI 10.14232/ejqtde.2018.1.31 | MR 3811494 | Zbl 1413.35269
[54] G. Seo, D. L. DeAngelis: A predator-prey model with a Holling type I functional response including a predator mutual interference. J. Nonlinear Sci. 21 (2011), 811-833. DOI 10.1007/s00332-011-9101-6 | MR 2860930 | Zbl 1238.92049
[55] G. T. Skalski, J. F. Gilliam: Functional responses with predator interference: Viable alternatives to the Holling type II model. Ecology 82 (2001), 3083-3092. DOI 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
[56] O. Traore: Null controllability of a nonlinear population dynamics problem. Int. J. Math. Math. Sci. 2006 (2006), Article ID 49279, 20 pages. DOI 10.1155/IJMMS/2006/49279 | MR 2268531 | Zbl 1127.93017
[57] W. Wang, L. Zhang, H. Wang, Z. Li: Pattern formation of a predator-prey system with Ivlev-type functional response. Ecological Modelling 221 (2010), 131-140. DOI 10.1016/j.ecolmodel.2009.09.011
[58] G. F. Webb: Population models structured by age, size, and spatial position. Structured Population Models in Biology and Epidemiology. Lecture Notes in Mathematics 1936. Springer, Berlin (2008), 1-49. DOI 10.1007/978-3-540-78273-5_1 | MR 2433574
[59] Y. Zhang, Z. Xu, B. Liu, L. Chen: Dynamic analysis of a Holling I predator-prey system with mutual interference concerning pest control. J. Biol. Syst. 13 (2005), 45-58. DOI 10.1142/S0218339005001392 | Zbl 1073.92061
[60] C. Zhao, M. Wang, P. Zhao: Optimal control of harvesting for age-dependent predator-prey system. Math. Comput. Modelling 42 (2005), 573-584. DOI 10.1016/j.mcm.2004.07.019 | MR 2173475 | Zbl 1088.92063

Affiliations:   Younes Echarroudi, Laboratory of Mathematics and Population Dynamics, Faculty of Sciences Semlalia, Marrakesh, Morocco; e-mail: yecharroudi@gmail.com


 
PDF available at: