Mathematica Bohemica, Vol. 148, No. 3, pp. 329-348, 2023
Investigating generalized quaternions with dual-generalized complex numbers
Nurten Gürses, Gülsüm Yeliz Şentürk, Salim Yüce
Received June 30, 2021. Published online August 3, 2022.
Abstract: We aim to introduce generalized quaternions with dual-generalized complex number coefficients for all real values $\alpha$, $\beta$ and $\mathfrak{p}$. Furthermore, the algebraic structures, properties and matrix forms are expressed as generalized quaternions and dual-generalized complex numbers. Finally, based on their matrix representations, the multiplication of these quaternions is restated and numerical examples are given.
References: [1] M. Akar, S. Yüce, S. Şahin: On the dual hyperbolic numbers and the complex hyperbolic numbers. J. Computer Sci. Comput. Math. 8 (2018), 1-6. DOI 10.20967/jcscm.2018.01.001
[2] D. Alfsmann: On families of $2^N$-dimensional hypercomplex algebras suitable for digital signal processing. 14th European Signal Processing Conference. IEEE, Piscataway (2006), 1-4.
[3] S. Aslan, M. Bekar, Y. Yaylı: Hyper-dual split quaternions and rigid body motion. J. Geom. Phys. 158 (2020), Article ID 103876, 12 pages. DOI 10.1016/j.geomphys.2020.103876 | MR 4145613 | Zbl 1444.11022
[4] F. Catoni, D. Boccaletti, R. Cannata, V. Catoni, E. Nichelatti, P. Zampetti: The Mathematics of Minkowski Space-Time: With an Introduction to Commutative Hypercomplex Numbers. Frontiers in Mathematics. Birkhäuser, Basel (2008). DOI 10.1007/978-3-7643-8614-6 | MR 2411620 | Zbl 1151.53001
[5] F. Catoni, R. Cannata, V. Catoni, P. Zampetti: Two-dimensional hypercomplex numbers and related trigonometries and geometries. Adv. Appl. Clifford Algebr. 14 (2004), 47-68. DOI 10.1007/s00006-004-0008-2 | MR 2236099 | Zbl 1118.30300
[6] F. Catoni, R. Cannata, V. Catoni, P. Zampetti: $N$-dimensional geometries generated by hypercomplex numbers. Adv. Appl. Clifford Algebr. 15 (2005), 1-25. DOI 10.1007/s00006-005-0001-4 | MR 2236622 | Zbl 1114.53003
[7] H. H. Cheng, S. Thompson: Dual polynomials and complex dual numbers for analysis of spatial mechanisms. Design Engineering Technical Conferences and Computers in Engineering. Conference ASME 1996. ASME, Irvine (1996), 19-22. DOI 10.1115/96-DETC/MECH-1221
[8] H. H. Cheng, S. Thompson: Singularity analysis of spatial mechanisms using dual polynomials and complex dual numbers. J. Mech. Des. 121 (1999), 200-205. DOI 10.1115/1.2829444
[9] W. K. Clifford: Mathematical Papers. Chelsea Publishing, New York (1968). MR 0238662
[10] J. Cockle: On a new imaginary in algebra. Phil. Mag. (3) 34 (1849), 37-47. DOI 10.1080/14786444908646169
[11] J. Cockle: On systems of algebra involving more than one imaginary; and on equations of the fifth degree. Phil. Mag. (3) 35 (1849), 434-437. DOI 10.1080/14786444908646384
[12] A. Cohen, M. Shoham: Principle of transference: An extension to hyper-dual numbers. Mech. Mach. Theory 125 (2018), 101-110. DOI 10.1016/j.mechmachtheory.2017.12.007
[13] L. E. Dickson: On the theory of numbers and generalized quaternions. Am. J. Math. 46 (1924), 1-16. DOI 10.2307/2370658 | MR 1506514 | JFM 50.0094.02
[14] J. A. Fike, J. J. Alonso: The development of hyper-dual numbers for exact second-derivative calculations. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics, New York (2011), 1-17. DOI 10.2514/6.2011-886
[15] J. A. Fike, J. J. Alonso: Automatic differentiation through the use of hyper-dual numbers for second derivatives. Recent Advances in Algorithmic Differentiation. Lecture Notes in Computational Science and Engineering 87. Springer, Berlin (2012), 163-173. DOI 10.1007/978-3-642-30023-3_15 | MR 3241221 | Zbl 1251.65026
[16] P. Fjelstad: Extending special relativity via the perplex numbers. Am. J. Phys. 54 (1986), 416-422. DOI 10.1119/1.14605 | MR 0839491
[17] P. Fjelstad, G. S. Gal: $n$-dimensional hyperbolic complex numbers. Adv. Appl. Clifford Algebr. 8 (1998), 47-68. DOI 10.1007/BF03041925 | MR 1648833 | Zbl 0937.30029
[18] L. W. Griffiths: Generalized quaternion algebras and the theory of numbers. Am. J. Math. 50 (1928), 303-314. DOI 10.2307/2371761 | MR 1506671 | JFM 54.0164.01
[19] N. Gürses, G. Y. Şentürk, S. Yüce: A study on dual-generalized complex and hyperbolic-generalized complex numbers. Gazi Univ. J. Sci. 34 (2021), 180-194. DOI 10.35378/gujs.653906
[20] W. R. Hamilton: On quaternions; or on a new system of imaginaries in algebra. Phil. Mag. (3) 25 (1844), 10-13. DOI 10.1080/14786444408644923
[21] W. R. Hamilton: Lectures on Quaternions. Hodges and Smith, Dublin (1853).
[22] W. R. Hamilton: Elements of Quaternions. Chelsea Publishing, New York (1969). DOI 10.1017/CBO9780511707162 | MR 0237284
[23] A. A. Harkin, J. B. Harkin: Geometry of generalized complex numbers. Math. Mag. 77 (2004), 118-129. DOI 10.1080/0025570X.2004.11953236 | MR 1573734 | Zbl 1176.30070
[24] M. Jafari, Y. Yayli: Generalized quaternions and their algebratic properties. Commun. Fac. Sci. Univ. Ank., Ser. A1 64 (2015), 15-27. DOI 10.1501/Commua1_0000000724
[25] I. L. Kantor, A. S. Solodovnikov: Hypercomplex Numbers: An Elementary Introduction to Algebras. Springer, New York (1989). MR 0996029 | Zbl 0669.17001
[26] V. Majernik: Multicomponent number systems. Acta Phys. Polon. A 90 (1996), 491-498. DOI 10.12693/APhysPolA.90.491 | MR 1426884
[27] A. B. Mamagani, M. Jafari: On properties of generalized quaternion algebra. J. Novel Appl. Sci. 2 (2013), 683-689.
[28] F. Messelmi: Dual-complex numbers and their holomorphic functions. Available at https://hal.archives-ouvertes.fr/hal-01114178 (2015), 11 pages.
[29] E. Pennestri, R. Stefanelli: Linear algebra and numerical algorithms using dual numbers. Multibody Syst. Dyn. 18 (2007), 323-344. DOI 10.1007/s11044-007-9088-9 | MR 2355249 | Zbl 1128.70002
[30] H. Pottman, J. Wallner: Computational Line Geometry. Mathematics and Visualization. Springer, Berlin (2001). DOI 10.1007/978-3-642-04018-4 | MR 1849803 | Zbl 1006.51015
[31] G. B. Price: An Introduction to Multicomplex Spaces and Functions. Pure and Applied Mathematics 140. Marcel Dekker, New York (1991). DOI 10.1201/9781315137278 | MR 1094818 | Zbl 0729.30040
[32] D. Rochon, M. Shapiro: On algebraic properties of bicomplex and hyperbolic numbers. An. Univ. Oradea, Fasc. Mat. 11 (2004), 71-110. MR 2127591 | Zbl 1114.11033
[33] D. Savin, C. Flaut, C. Ciobanu: Some properties of the symbol algebras. Carpathian J. Math. 25 (2009), 239-245. MR 2731200 | Zbl 1249.17007
[34] G. Sobczyk: The hyperbolic number plane. Coll. Math. J. 26 (1995), 268-280. DOI 10.1080/07468342.1995.11973712
[35] E. Study: Geometrie der Dynamen: Die Zusammensetzung von Kräften und verwandte Gegenstände der Geometrie. B. G. Teubner, Leipzig (1903). (In German.) JFM 33.0691.01
[36] H. Toyoshima: Computationally efficient bicomplex multipliers for digital signal processing. IEICE Trans. Inform. Syst. E81-D (1998), 236-238.
[37] S. Veldsman: Generalized complex numbers over near-fields. Quaest. Math. 42 (2019), 181-200. DOI 10.2989/16073606.2018.1442884 | MR 3918887 | Zbl 1437.16044
[38] I. M. Yaglom: Complex Numbers in Geometry. Academic Press, New York (1968). MR 0220134 | Zbl 0147.20201
[39] I. M. Yaglom: A Simple Non-Euclidean Geometry and Its Physical Basis: An Elementary Account of Galilean Geometry and the Galilean Principle of Relativity. Springer, New York (1979). DOI 10.1007/978-1-4612-6135-3 | MR 0520230 | Zbl 0393.51013
Affiliations: Nurten Gürses (corresponding author), Department of Mathematics, Faculty of Arts and Sciences, Yildiz Technical University, 34220, Istanbul, Turkey, e-mail: nbayrak@yildiz.edu.tr; Gülsüm Yeliz Şentürk, Department of Computer Engineering, Faculty of Engineering and Architecture, Istanbul Gelisim University, 34310, Istanbul, Turkey, e-mail: gysenturk@gelisim.edu.tr; Salim Yüce, Department of Mathematics, Faculty of Arts and Sciences, Yildiz Technical University, 34220, Istanbul, Turkey, e-mail: sayuce@yildiz.edu.tr