Mathematica Bohemica, Vol. 148, No. 2, pp. 243-253, 2023
On Goldie absolute direct summands in modular lattices
Rupal Shroff
Received July 25, 2021. Published online July 11, 2022.
Abstract: Absolute direct summand in lattices is defined and some of its properties in modular lattices are studied. It is shown that in a certain class of modular lattices, the direct sum of two elements has absolute direct summand if and only if the elements are relatively injective. As a generalization of absolute direct summand (ADS for short), the concept of Goldie absolute direct summand in lattices is introduced and studied. It is shown that Goldie ADS property is inherited by direct summands. A necessary and sufficient condition is given for an element of modular lattice to have Goldie ADS.
Keywords: injective element; ejective element; Goldie extending element; absolute direct summand; Goldie absolute direct summand
References: [1] A. Alahmadi, S. K. Jain, A. Leroy: ADS modules. J. Algebra 352 (2012), 215-222. DOI 10.1016/j.jalgebra.2011.10.035 | MR 2862183 | Zbl 1256.16005
[2] W. D. Burgess, R. Raphael: On modules with the absolute direct summand property. Ring Theory. World Scientific, Singapore (1993), 137-148. MR 1344227 | Zbl 0853.16008
[3] G. Călugăreanu: Lattice Concepts of Module Theory. Kluwer Texts in the Mathematical Sciences 22. Kluwer, Dordrecht (2000). DOI 10.1007/978-94-015-9588-9 | MR 1782739 | Zbl 0959.06001
[4] L. Fuchs: Infnite Abelian Groups. I. Pure and Applied Mathematics 36. Academic Press, New York (1970). MR 0255673 | Zbl 0209.05503
[5] G. Grätzer: General Lattice Theory. Birkhäuser, Basel (1998). MR 1670580 | Zbl 0909.06002
[6] S. K. Nimbhorkar, R. C. Shroff: Generalized extending ideals in modular lattices. J. Indian Math. Soc., New Ser. 82 (2015), 127-146. MR 3467622 | Zbl 1351.06004
[7] S. K. Nimbhorkar, R. C. Shroff: Ojective ideals in modular lattices. Czech. Math. J. 65 (2015), 161-178. DOI 10.1007/s10587-015-0166-5 | MR 3336031 | Zbl 1338.06004
[8] S. K. Nimbhorkar, R. C. Shroff: Goldie extending elements in modular lattices. Math. Bohem. 142 (2017), 163-180. DOI 10.21136/MB.2016.0049-14 | MR 3660173 | Zbl 1424.06028
[9] T. C. Quynh, S. Şahinkaya: Goldie absolute direct summand in rings and modules. Stud. Univ. Babeş-Bolyai, Math. 63 (2018), 437-445. DOI 10.24193/subbmath.2018.4.02 | MR 3886059 | Zbl 1438.16014
[10] F. Takil Mutlu: On Modules With the Absolute Direct Summand Property: Ph.D. Thesis. University of Anatolia, Eskişehir (2003).
[11] F. Takil Mutlu: On AdS-modules with the SIP. Bull. Iran. Math. Soc. 41 (2015), 1355-1363. MR 3437148 | Zbl 1373.16013
[12] A. Tercan, C. C. Yücel: Module Theory, Extending Modules and Generalizations. Frontiers in Mathematics. Birkhäuser, Basel (2016). DOI 10.1007/978-3-0348-0952-8 | MR 3468915 | Zbl 1368.16002