Mathematica Bohemica, Vol. 148, No. 2, pp. 237-242, 2023
On units of some fields of the form $\mathbb{Q}(\sqrt2, \sqrt{p}, \sqrt{q}, \sqrt{-\ell})$
Mohamed Mahmoud Chems-Eddin
Received August 25, 2021. Published online June 7, 2022.
Abstract: Let $p\equiv1\pmod8$ and $q\equiv3\pmod8$ be two prime integers and let $\ell\not\in\{-1, p, q\}$ be a positive odd square-free integer. Assuming that the fundamental unit of $\mathbb{Q}(\sqrt{2p}) $ has a negative norm, we investigate the unit group of the fields $\mathbb{Q}(\sqrt2, \sqrt{p}, \sqrt{q}, \sqrt{-\ell} )$.
Keywords: multiquadratic number field; unit group; fundamental system of units
References: [1] A. Azizi: Unités de certains corps de nombres imaginaires et abéliens sur $\mathbb{Q}$. Ann. Sci. Math. Qué. 23 (1999), 15-21. (In French.) MR 1721726 | Zbl 1041.11072
[2] M. M. Chems-Eddin: Arithmetic of some real triquadratic fields: Units and 2-class groups. Available at https://arxiv.org/abs/2108.04171v1 (2021), 32 pages.
[3] M. M. Chems-Eddin: Unit groups of some multiquadratic number fields and 2-class groups. Period. Math. Hung. 84 (2022), 235-249. DOI 10.1007/s10998-021-00402-0 | MR 4423478
[4] M. M. Chems-Eddin, A. Azizi, A. Zekhnini: Unit groups and Iwasawa lambda invariants of some multiquadratic number fields. Bol. Soc. Mat. Mex., III. Ser. 27 (2021), Article ID 24, 16 pages. DOI 10.1007/s40590-021-00329-z | MR 4220815 | Zbl 07342807
[5] M. M. Chems-Eddin, A. Zekhnini, A. Azizi: Units and 2-class field towers of some multiquadratic number fields. Turk. J. Math. 44 (2020), 1466-1483. DOI 10.3906/mat-2003-117 | MR 4122918 | Zbl 1455.11140
[6] T. Kubota: Über den bizyklischen biquadratischen Zahlkörper. Nagoya Math. J. 10 (1956), 65-85. (In German.) DOI 10.1017/S0027763000000088 | MR 0083009 | Zbl 0074.03001
[7] J. Varmon: Über Abelsche Körper, deren alle Gruppeninvarianten aus einer Primzahl bestehen, und über Abelsche Körper als Kreiskörper. Hakan Ohlssons Boktryckeri, Lund (1925). (In German.) JFM 51.0123.05
[8] H. Wada: On the class number and the unit group of certain algebraic number fields. J. Fac. Sci, Univ. Tokyo, Sect. I 13 (1966), 201-209. MR 0214565 | Zbl 0158.30103
Affiliations: Mohamed Mahmoud Chems-Eddin, Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, Fez, Morocco e-mail: 2m.chemseddin@gmail.com