Mathematica Bohemica, Vol. 148, No. 2, pp. 181-195, 2023


On Bhargava rings

Mohamed Mahmoud Chems-Eddin, Omar Ouzzaouit, Ali Tamoussit

Received September 6, 2021.   Published online May 4, 2022.

Abstract:  Let $D$ be an integral domain with the quotient field $K$, $X$ an indeterminate over $K$ and $x$ an element of $D$. The Bhargava ring over $D$ at $x$ is defined to be $\mathbb{B}_x(D):=\{f\in\nobreak K[X] \text{for all} a\in D, f(xX+a)\in D[X]\}$. In fact, $\mathbb{B}_x(D)$ is a subring of the ring of integer-valued polynomials over $D$. In this paper, we aim to investigate the behavior of $\mathbb{B}_x(D)$ under localization. In particular, we prove that $\mathbb{B}_x(D)$ behaves well under localization at prime ideals of $D$, when $D$ is a locally finite intersection of localizations. We also attempt a classification of integral domains $D$ such that $\mathbb{B}_x(D)$ is locally free, or at least faithfully flat (or flat) as a $D$-module (or $D[X]$-module, respectively). Particularly, we are interested in domains that are (locally) essential. A particular attention is devoted to provide conditions under which $\mathbb{B}_x(D)$ is trivial when dealing with essential domains. Finally, we calculate the Krull dimension of Bhargava rings over MZ-Jaffard domains. Interesting results are established with illustrating examples.
Keywords:  Bhargava ring; localization; (locally) essential domain; locally free module; (faithfully) flat module; Krull dimension
Classification MSC:  13C11, 13F20, 13F05, 13B30, 13C15


References:
[1] I. Alrasasi, L. Izelgue: On the prime ideal structure of Bhargava rings. Commun. Algebra 38 (2010), 1385-1400. DOI 10.1080/00927870902922968 | MR 2656583 | Zbl 1198.13019
[2] I. Al-Rasasi, L. Izelgue: Bhargava rings over subsets. Homological and Combinatorial Methods in Algebra. Springer Proceedings in Mathematics & Statistics 228. Springer, Cham (2018), 9-26. DOI 10.1007/978-3-319-74195-6_2 | MR 3778007 | Zbl 1402.13019
[3] D. D. Anderson, D. F. Anderson: Generalized GCD domains. Comment. Math. Univ. St. Pauli 28 (1980), 215-221. MR 0578675 | Zbl 0434.13001
[4] D. D. Anderson, D. F. Anderson, M. Zafrullah: Rings between $D[X]$ and $K[X]$. Houston J. Math. 17 (1991), 109-129. MR 1107192 | Zbl 0736.13015
[5] M. Bhargava, P.-J. Cahen, J. Yeramian: Finite generation properties for various rings of integer-valued polynomials. J. Algebra 322 (2009), 1129-1150. DOI 10.1016/j.jalgebra.2009.04.017 | MR 2537676 | Zbl 1177.13051
[6] N. Bourbaki: Éléments de Mathématique. Algèbre Commutative. Chapitres 1 à 4. Masson, Paris (1985). (In French.) DOI 10.1007/978-3-540-33976-2 | MR 782296 | Zbl 1103.13001
[7] J. W. Brewer, W. J. Heinzer: Associated primes of principal ideals. Duke Math. J. 41 (1974), 1-7. DOI 10.1215/S0012-7094-74-04101-5 | MR 0335486 | Zbl 0284.13001
[8] P.-J. Cahen, J.-L. Chabert: Integer-Valued Polynomials. Mathematical Surveys Monographs 48. American Mathematical Society, Providence (1997). DOI 10.1090/surv/048 | MR 1421321 | Zbl 0884.13010
[9] S. El-Baghdadi: Semistar GCD domains. Commun. Algebra 38 (2010), 3029-3044. DOI 10.1080/00927870903114961 | MR 2730293 | Zbl 1203.13002
[10] J. Elliott: Some new approaches to integer-valued polynomial rings. Commutative Algebra and Its Applications. Walter de Gruyter, Berlin (2009), 223-237. DOI 10.1515/9783110213188.223 | MR 2606288 | Zbl 1177.13053
[11] J. Elliott: Integer-valued polynomial rings, $t$-closure, and associated primes. Commun. Algebra 39 (2011), 4128-4147. DOI 10.1080/00927872.2010.519366 | MR 2855117 | Zbl 1247.13022
[12] M. Fontana, S. Kabbaj: Essential domains and two conjectures in dimension theory. Proc. Am. Math. Soc. 132 (2004), 2529-2535. DOI 10.1090/S0002-9939-04-07502-1 | MR 2054776 | Zbl 1059.13008
[13] R. Gilmer: Multiplicative Ideal Theory. Queen's Papers in Pure and Applied Mathematics 90. Queen's University, Kingston (1992). MR 1204267 | Zbl 0804.13001
[14] R. W. Gilmer, Jr.: Overrings of Prüfer domains. J. Algebra 4 (1966), 331-340. DOI 10.1016/0021-8693(66)90025-1 | MR 0202749 | Zbl 0146.26205
[15] W. Heinzer: An essential integral domain with a non-essential localization. Can. J. Math. 33 (1981), 400-403. DOI 10.4153/CJM-1981-034-8 | MR 0617630 | Zbl 0411.13013
[16] W. Heinzer, M. Roitman: Well-centered overrings of an integral domain. J. Algebra 272 (2004), 435-455. DOI 10.1016/S0021-8693(03)00462-9 | MR 2028066 | Zbl 1040.13002
[17] O. A. Heubo-Kwegna, B. Olberding, A. Reinhart: Group-theoretic and topological invariants of completely integrally closed Prüfer domains. J. Pure Appl. Algebra 220 (2016), 3927-3947. DOI 10.1016/j.jpaa.2016.05.021 | MR 3517563 | Zbl 1353.13020
[18] H. C. Hutchins: Examples of Commutative Rings. Polygonal Publishing House, Washington (1981). MR 0638720 | Zbl 0492.13001
[19] L. Izelgue, A. A. Mimouni, A. Tamoussit: On the module structure of the integer-valued polynomial rings. Bull. Malays. Math. Sci. Soc. (2) 43 (2020), 2687-2699. DOI 10.1007/s40840-019-00826-5 | MR 4089663 | Zbl 1437.13030
[20] H. Kim, A. Tamoussit: Integral domains issued from associated primes. Commun. Algebra 50 (2022), 538-555. DOI 10.1080/00927872.2021.1960991 | MR 4375523
[21] J. L. Mott, M. Zafrullah: On Prüfer $v$-multiplication domains. Manuscr. Math. 35 (1981), 1-26. DOI 10.1007/BF01168446 | MR 0627923 | Zbl 0477.13007
[22] M. H. Park, F. Tartarone: Bhargava rings that are Prüfer $v$-multiplication domains. J. Algebra Appl. 19 (2020), Article ID 2050098, 14 pages. DOI 10.1142/S021949882050098X | MR 4114450 | Zbl 1445.13020
[23] E. M. Pirtle, Jr.: Integral domains which are almost Krull. J. Sci. Hiroshima Univ., Ser. A-I 32 (1968), 441-447. DOI 10.32917/hmj/1206138662 | MR 0244221 | Zbl 0181.04903
[24] E. M. Pirtle, Jr.: Families of valuations and semigroups of fractionary ideal classes. Trans. Am. Math. Soc. 144 (1969), 427-439. DOI 10.1090/S0002-9947-1969-0249416-4 | MR 0249416 | Zbl 0197.03203
[25] A. Tamoussit: A note on the Krull dimension of rings between $D[X]$ and $ Int(D)$. Boll. Unione Mat. Ital. 14 (2021), 513-519. DOI 10.1007/s40574-021-00281-w | MR 4290350 | Zbl 1469.13025
[26] F. Tartarone: On the Krull dimension of $ Int(D)$ when $D$ is a pullback. Commutative Ring Theory. Lecture Notes in Pure Applied Mathematics 185. Marcel Dekker, New York (1997), 457-470. MR 1422501 | Zbl 0899.13024
[27] J. Yeramian: Anneaux de Bhargava: Thèse de Doctorat. Université Paul Cézanne, Marseille (2004). (In French.)
[28] J. Yeramian: Anneaux de Bhargava. Commun. Algebra 32 (2004), 3043-3069. (In French.) DOI 10.1081/AGB-120039278 | MR 2102166 | Zbl 1061.13011
[29] J. Yeramian: Prime ideals of Bhargava domains. J. Pure Appl. Algebra 213 (2009), 1013-1025. DOI 10.1016/j.jpaa.2008.11.008 | MR 2498793 | Zbl 1162.13007
[30] M. Zafrullah: The $D+XD_S[X]$ construction from GCD-domains. J. Pure Appl. Algebra 50 (1988), 93-107. DOI 10.1016/0022-4049(88)90006-0 | MR 0931909 | Zbl 0656.13020

Affiliations:   Mohamed Mahmoud Chems-Eddin, Department of Mathematics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdallah, Fez, Morocco, e-mail: 2m.chemseddin@gmail.com; Omar Ouzzaouit, Higher School of Education and Training, Ibn Zohr University, Agadir, Morocco, e-mail: o.ouzzaouit@uiz.ac.ma, ouzzaouitomar@gmail.com; Ali Tamoussit, Department of Mathematics, Regional Center for Education and Training Professions Souss Massa, Inezgane, Morocco, e-mail: a.tamoussit@crmefsm.ac.ma, tamoussit2009@gmail.com


 
PDF available at: