Mathematica Bohemica, Vol. 149, No. 1, pp. 87-103, 2024


Entire function sharing two polynomials with its $k$th derivative

Sujoy Majumder, Nabadwip Sarkar

Received February 7, 2022.   Published online March 3, 2023.

Abstract:  We investigate the uniqueness problem of entire functions that share two polynomials with their $k$th derivatives and obtain some results which improve and generalize the recent result due to Lü and Yi (2011). Also, we exhibit some examples to show that the conditions of our results are the best possible.
Keywords:  meromorphic function; derivative; Nevanlinna theory; uniqueness
Classification MSC:  30D35, 30D45


References:
[1] R. Brück: On entire functions which share one value CM with their first derivative. Result. Math. 30 (1996), 21-24. DOI 10.1007/BF03322176 | MR 1402421 | Zbl 0861.30032
[2] W. K. Hayman: Meromorphic Functions. Oxford Mathematical Monographs. Clarendon Press, Oxford (1964). MR 0164038 | Zbl 0115.06203
[3] I. Lahiri: Weighted value sharing and uniqueness of meromorphic functions. Complex Variables, Theory Appl. 46 (2001), 241-253. DOI 10.1080/17476930108815411 | MR 1869738 | Zbl 1025.30027
[4] I. Laine: Nevanlinna Theory and Complex Differential Equations. de Gruyter Studies in Mathematics 15. Walter de Gruyter, Berlin (1993). DOI 10.1515/9783110863147 | MR 1207139 | Zbl 0784.30002
[5] J. Li, H. Yi: Normal families and uniqueness of entire functions and their derivatives. Arch. Math. 87 (2006), 52-59. DOI 10.1007/s00013-005-1619-0 | MR 2246406 | Zbl 1104.30019
[6] F. Lü, J. Xu, A. Chen: Entire functions sharing polynomials with their first derivatives. Arch. Math. 92 (2009), 593-601. DOI 10.1007/s00013-009-3075-8 | MR 2516165 | Zbl 1179.30027
[7] F. Lü, H. Yi: The Brück conjecture and entire functions sharing polynomials with their $k$-th derivatives. J. Korean Math. Soc. 48 (2011), 499-512. DOI 10.4134/JKMS.2011.48.3.499 | MR 2815888 | Zbl 1232.30024
[8] E. Mues, N. Steinmetz: Meromorphe Funktionen, die mit ihrer Ableitung Werte teilen. Manuscr. Math. 29 (1979), 195-206. (In German.) DOI 10.1007/BF01303627 | MR 0545041 | Zbl 0416.30028
[9] L. A. Rubel, C.-C. Yang: Values shared by an entire function and its derivative. Complex Analysis Lecture Notes in Mathematics 599. Springer, Berlin (1977), 101-103. DOI 10.1007/BFb0096830 | MR 0460640 | Zbl 0362.30026
[10] J. L. Schiff: Normal Families. Universitext. Springer, New York (1993). DOI 10.1007/978-1-4612-0907-2 | MR 1211641 | Zbl 0770.30002
[11] C.-C. Yang, H.-X. Yi: Uniqueness Theory of Meromorphic Functions. Mathematics and Its Applications (Dordrecht) 557. Kluwer Academic, Dordrecht (2003). DOI 10.1007/978-94-017-3626-8 | MR 2105668 | Zbl 1070.30011
[12] L.-Z. Yang, J.-L. Zhang: Non-existence of meromorphic solutions of Fermat type functional equation. Aequationes Math. 76 (2008), 140-150. DOI 10.1007/s00010-007-2913-7 | MR 2443466 | Zbl 1161.30022
[13] J.-L. Zhang, L.-Z. Yang: A power of an entire function sharing one value with its derivative. Comput. Math. Appl. 60 (2010), 2153-2160. DOI 10.1016/j.camwa.2010.08.001 | MR 2719737 | Zbl 1205.30033

Affiliations:   Sujoy Majumder (corresponding author), Nabadwip Sarkar Department of Mathematics, Raiganj University, Raiganj, West Bengal-733134, India, e-mail: sm05math@gmail.com, smj@raiganjuniversity.ac.in, naba.iitbmath@gmail.com


 
PDF available at: