Mathematica Bohemica, Vol. 149, No. 1, pp. 57-73, 2024


New equivalent conditions for Hardy-type inequalities

Alois Kufner, Komil Kuliev, Gulchehra Kulieva, Mohlaroyim Eshimova

Received June 23, 2022.   Published online March 3, 2023.

Abstract:  We consider a Hardy-type inequality with Oinarov's kernel in weighted Lebesgue spaces. We give new equivalent conditions for satisfying the inequality, and provide lower and upper estimates for its best constant. The findings are crucial in the study of oscillation and non-oscillation properties of differential equation solutions, as well as spectral properties.
Keywords:  integral operator; norm; weight function; Lebesgue space; Hardy-type inequality; kernel
Classification MSC:  26D10, 26D15, 47B01, 47B34, 47B37, 47B93, 47G10


References:
[1] S. Bloom, R. Kerman: Weighted norm inequalities for operators of Hardy type. Proc. Am. Math. Soc. 113 (1991), 135-141. DOI 10.1090/S0002-9939-1991-1059623-6 | MR 1059623 | Zbl 0753.42010
[2] J. S. Breadley: Hardy inequalities with mixed norms. Can. Math. Bull. 21 (1978), 405-408. DOI 10.4153/CMB-1978-071-7 | MR 0523580 | Zbl 0402.26006
[3] P. Drábek, K. Kuliev, M. Marletta: Some criteria for discreteness of spectrum of half-linear fourth order Sturm-Liouville problem. NoDEA, Nonlinear Differ. Equ. Appl. 24 (2017), Article ID 11, 39 pages. DOI 10.1007/s00030-017-0433-2 | MR 3608754 | Zbl 1383.34044
[4] A. Gogatishvili, A. Kufner, L.-E. Persson: Some new scales of weight characterizations of the class $B_p$. Acta Math. Hung. 123 (2009), 365-377. DOI 10.1007/s10474-009-8132-z | MR 2506756 | Zbl 1199.26057
[5] A. Gogatishvili, A. Kufner, L.-E. Persson, A. Wedestig: An equivalence theorem for integral conditions related to Hardy's inequality. Real Anal. Exch. 29 (2004), 867-880. DOI 10.14321/realanalexch.29.2.0867 | MR 2083821 | Zbl 1070.26015
[6] A. A. Kalybay, A. O. Baiarystanov: Exact estimate of norm of integral operator with Oinarov condition. Mat. Zh. 21 (2021), 6-14. Zbl 1488.26068
[7] V. M. Kokilashvili: On Hardy's inequalities in weighted spaces. Soobshch. Akad. Nauk Gruzin. SSR 96 (1979), 37-40. (In Russian.) MR 0564755 | Zbl 0434.26007
[8] A. Kufner, K. Kuliev, R. Oinarov: Some criteria for boundedness and compactness of the Hardy operator with some special kernels. J. Inequal. Appl. 2013 (2013), Article ID 310, 15 pages. DOI 10.1186/1029-242X-2013-310 | MR 3083528 | Zbl 1290.26024
[9] A. Kufner, K. Kuliev, L.-E. Persson: Some higher order Hardy inequalities. J. Inequal. Appl. 2012 (2012), Article ID 69, 14 pages. DOI 10.1186/1029-242X-2012-69 | MR 2931013 | Zbl 1276.26048
[10] A. Kufner, L. Maligranda, L.-E. Persson: The Hardy Inequality: About Its History and Some Related Results. Vydavatelský servis, Pilsen (2007). Zbl 1213.42001
[11] A. Kufner, L.-E. Persson: Weighted Inequalities of Hardy Type. World Scientific, Singapore (2003). DOI 10.1142/5129 | MR 1982932 | Zbl 1065.26018
[12] A. Kufner, L.-E. Persson, A. Wedestig: A study of some constants characterizing the weighted Hardy inequality. Banach Center Publ. 64 (2004), 135-146. DOI 10.4064/bc64-0-11 | MR 2099465 | Zbl 1052.26018
[13] K. Kuliev, G. Kulieva, M. Eshimova: On estimates for norm of an integral operator with Oinarov kernel. Uzb. Math. J. 65 (2021), 117-127. DOI 10.29229/uzmj.2021-4-10 | MR 4378731 | Zbl 07465549
[14] F. J. Martin-Reyes, E. Sawyer: Weighted inequalities for Riemann-Liouville fractional integrals of order one and greater. Proc. Am. Math. Soc. 106 (1989), 727-733. DOI 10.1090/S0002-9939-1989-0965246-8 | MR 0965246 | Zbl 0704.42018
[15] V. G. Maz'ja: Sobolev Spaces. Springer Series in Soviet Mathematics. Springer, Berlin (1979). DOI 10.1007/978-3-662-09922-3 | MR 0817985 | Zbl 0692.46023
[16] B. Muckenhoupt: Hardy's inequality with weights. Stud. Math. 44 (1972), 31-38. DOI 10.4064/sm-44-1-31-38 | MR 0311856 | Zbl 0236.26015
[17] R. Oinarov: Two-sided norm estimates for certain classes of integral operators. Proc. Steklov Inst. Math. 204 (1994), 205-214; translation from Tr. Mat. Inst. Steklova 204 (1993), 240-250. MR 1320028 | Zbl 0883.47048
[18] B. Opic, A. Kufner: Hardy-Type Inequalities. Pitman Research Notes in Mathematics 219. Longman Scientific & Technical, Harlow (1990). MR 1069756 | Zbl 0698.26007
[19] L.-E. Persson, V. D. Stepanov: Weighted integral inequalities with the geometric mean. Dokl. Math. 63 (2001), 201-202; translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 377 (2001), 439-440. MR 1862003 | Zbl 1044.26014
[20] D. V. Prokhorov: On the boundedness and compactness of a class of integral operators. J. Lond. Math. Soc., II. Ser. 61 (2000), 617-628. DOI 10.1112/S002461079900856X | MR 1760684 | Zbl 0956.47019
[21] D. V. Prokhorov, V. D. Stepanov: Weighted estimates for the Riemann-Liouville operators and applications. Proc. Steklov Inst. Math. 243 (2003), 278-301; translation from Tr. Mat. Inst. Steklova 243 (2003), 289-312. MR 2054439 | Zbl 1081.26004
[22] G. Talenti: Osservazioni sopra una classe di disuguaglianze. Rend. Sem. Mat. Fis. Milano 39 (1969), 171-185. (In Italian.) DOI 10.1007/BF02924135 | MR 0280661 | Zbl 0218.26011
[23] G. Tomaselli: A class of inequalities. Boll. Unione Mat. Ital., IV. Ser. 2 (1969), 622-631. MR 0255751 | Zbl 0188.12103
[24] A. Wedestig: Weighted Inequalities of Hardy-Type and their Limiting Inequalities: Doctoral Thesis. Lulea University of Technology, Lulea (2003).

Affiliations:   Alois Kufner, Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 11567 Praha 1, Czech Republic, e-mail: kufner@math.cas.cz; Komil Kuliev (corresponding author), Uzbek-Finnish Pedagogical Institute of Samarkand State University, Samarkand 140104, Uzbekistan and Institute of Mathematics named after V. I. Romanovsky of the Academy of Sciences of the Republic of Uzbekistan, Tashkent 100174, Uzbekistan, e-mail: komilkuliev@gmail.com; Gulchehra Kulieva, Samarkand State University, Samarkand 140104, Uzbekistan, e-mail: gkulieva@mail.ru; Mohlaroyim Eshimova, Institute of Mathematics named after V. I. Romanovsky of the Academy of Sciences of the Republic of Uzbekistan, Tashkent 100174, Uzbekistan, e-mail: eshimova_math@mail.ru


 
PDF available at: