Subclass of analytic functions related with Miller-Ross-type Poisson distribution series
Basem Aref Frasin
Received January 5, 2024. Published online December 4, 2024.
Abstract: The purpose of the present paper is to find a necessary and sufficient condition for the Miller-Ross-type Poisson distribution series to be in the class $\mathcal{P}^{\ast}(\alpha,\beta,\gamma)$ of analytic functions with negative coefficients. Also, we investigate several inclusion properties of the classes of Janowski type close-to-starlike functions, Janowski type close-to-convex functions and Janowski type quasi-convex functions associated with the operator $\mathbb{I}_{\theta,\epsilon}^s$ defined by this distribution. Further, we consider an integral operator related to the Miller-Ross-type Poisson distribution series. Several corollaries and consequences of the main results are also considered.
Keywords: analytic function; starlike function; convex function; Hadamard product; Miller-Ross-type Poisson distribution series
References: [1] M. Ahmad, B. Frasin, G. Murugusundaramoorthy, A. Al-Khazaleh: An application of Mittag-Leffler-type Poisson distribution on certain subclasses of analytic functions associated with conic domains. Heliyon 7 (2021), Article ID e08109, 5 pages. DOI 10.1016/j.heliyon.2021.e08109
[2] T. Al-Hawary, B. A. Frasin, F. Yousef: Coefficient estimates for certain classes of analytic functions of complex order. Afr. Mat. 29 (2018), 1265-1271. DOI 10.1007/s13370-018-0623-z | MR 3869566 | Zbl 1413.30029
[3] O. Altintaş: On the coefficients of certain analytic functions. Math. Jap. 33 (1988), 653-659. MR 0972373 | Zbl 0653.30006
[4] O. Altintaş, H. Irmak, S. Owa, H. M. Srivastava: Coefficient bounds for some families of starlike and convex functions of complex order. Appl. Math. Lett. 20 (2007), 1218-1222. DOI 10.1016/j.aml.2007.01.003 | MR 2384250 | Zbl 1139.30005
[5] O. Altintaş, Ö.Ö. Kiliç: Coefficient estimates for a class containing quasi-convex functions. Turk. J. Math. 42 (2018), 2819-2825. DOI 10.3906/mat-1805-90 | MR 3866193 | Zbl 1424.30025
[6] A. Amourah, B. A. Frasin, M. Ahmad, F. Yousef: Exploiting the Pascal distribution series and Gegenbauer polynomials to construct and study a new subclass of analytic bi-univalent functions. Symmetry 14 (2022), Article ID 147, 8 pages. DOI 10.3390/sym14010147
[7] A. A. Attiya: Some applications of Mittag-Leffler function in the unit disk. Filomat 30 (2016), 2075-2081. DOI 10.2298/FIL1607075A | MR 3535604 | Zbl 1458.30006
[8] D. Bansal, J. K. Prajapat: Certain geometric properties of the Mittag-Leffler functions. Complex Var. Elliptic Equ. 61 (2016), 338-350. DOI 10.1080/17476933.2015.1079628 | MR 3454110 | Zbl 1336.33039
[9] N. E. Cho, S. Y. Woo, S. Owa: Uniform convexity properties for hypergeometric functions. Fract. Calc. Appl. Anal. 5 (2002), 303-313. MR 1922272 | Zbl 1028.30013
[10] R. M. El-Ashwah, W. Y. Kota: Some condition on a Poisson distribution series to be in subclasses of univalent functions. Acta Univ. Apulensis, Math. Inform. 51 (2017), 89-103. DOI 10.17114/j.aua.2017.51.08 | MR 3711116 | Zbl 1413.30053
[11] S. M. El-Deeb, T. Bulboacă, J. Dziok: Pascal distribution series connected with certain subclasses of univalent functions. Kyungpook Math. J. 59 (2019), 301-314. DOI 10.5666/KMJ.2019.59.2.301 | MR 3987710 | Zbl 1435.30045
[12] B. A. Frasin, T. Al-Hawary, F. Yousef: Necessary and sufficient conditions for hypergeometric functions to be in a subclass of analytic functions. Afr. Mat. 30 (2019), 223-230. DOI 10.1007/s13370-018-0638-5 | MR 3927324 | Zbl 1438.30042
[13] B. A. Frasin, T. Al-Hawary, F. Yousef: Some properties of a linear operator involving generalized Mittag-Leffler function. Stud. Univ. Babeş-Bolyai, Math. 65 (2020), 67-75. DOI 10.24193/subbmath.2020.1.06 | MR 4085426 | Zbl 1513.33050
[14] B. A. Frasin, S. M. Aydoğan: Pascal distribution series for subclasses of analytic functions associated with conic domains. Afr. Mat. 32 (2021), 105-113. DOI 10.1007/s13370-020-00813-1 | MR 4222458 | Zbl 1474.30075
[15] B. A. Frasin, M. M. Gharaibeh: Subclass of analytic functions associated with Poisson distribution series. Afr. Mat. 31 (2020), 1167-1173. DOI 10.1007/s13370-020-00788-z | MR 4154545 | Zbl 1463.30053
[16] B. A. Frasin, G. Murugusundaramoorthy, M. K. Aouf: Subclasses of analytic functions associated with Mittag-Leffler-type Poisson distribution. Palest. J. Math. 11 (2022), 496-503. MR 4345785 | Zbl 1494.30025
[17] M. Garg, P. Manohar, S. L. Kalla: A Mittag-Leffler-type function of two variables. Integral Transforms Spec. Funct. 24 (2013), 934-944. DOI 10.1080/10652469.2013.789872 | MR 3172007 | Zbl 1292.33020
[18] V. P. Gupta, P. K. Jain: Certain classes of univalent functions with negative coefficients. II. Bull. Aust. Math. Soc. 15 (1976), 467-473. DOI 10.1017/S0004972700022917 | MR 0435374 | Zbl 0335.30010
[19] W. Janowski: Some extremal problems for certain families of analytic functions. I. Ann. Pol. Math. 28 (1973), 297-326. DOI 10.4064/ap-28-3-297-326 | MR 0328059 | Zbl 0275.30009
[20] S. B. Joshi, S. S. Joshi, H. H. Pawar, D. Ritelli: Connections between normalized Wright functions with families of analytic functions with negative coefficients. Analysis, München 42 (2022), 111-119. DOI 10.1515/anly-2021-1027 | MR 4415955 | Zbl 1510.33018
[21] W. Kaplan: Close-to-convex schlicht functions. Mich. Math. J. 1 (1952), 169-185. DOI 10.1307/mmj/1028988895 | MR 0054711 | Zbl 0048.31101
[22] H. S. Kim, S. K. Lee: Some classes of univalent functions. Math. Jap. 32 (1987), 781-796. MR 0918290 | Zbl 0648.30010
[23] S. R. Kulkarni: Some Problems Connected with Univalent Functions: Ph.D. Thesis. Shivaji University, Kolhapur (1981).
[24] E. P. Merkes, W. T. Scott: Starlike hypergeometric functions. Proc. Am. Math. Soc. 12 (1961), 885-888. DOI 10.1090/S0002-9939-1961-0143950-1 | MR 143950 | Zbl 0102.06502
[25] K. S. Miller, B. Ross: An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons, New York (1993). MR 1219954 | Zbl 0789.26002
[26] G. Mittag-Leffler: Sur la nouvelle fonction $E_{\alpha}(x)$. C. R. Acad. Sci. Paris 137 (1904), 554-558. (In French.) JFM 34.0435.01
[27] G. Murugusundaramoorthy, B. A. Frasin, T. Al-Hawary: Uniformly convex spiral functions and uniformly spirallike functions associated with Pascal distribution series. Math. Bohem. 147 (2022), 407-417. DOI 10.21136/MB.2021.0132-20 | MR 4482314 | Zbl 1524.30070
[28] G. Murugusundaramoorthy, K. Vijaya, S. Porwal: Some inclusion results of certain subclass of analytic functions associated with Poisson distribution series. Hacet. J. Math. Stat. 45 (2016), 1101-1107. DOI 10.15672/HJMS.20164513110 | MR 3585439 | Zbl 1359.30022
[29] K. I. Noor, D. K. Thomas: Quasi-convex univalent functions. Int. J. Math. Math. Sci. 3 (1980), 255-266.
[30] S. Porwal: An application of a Poisson distribution series on certain analytic functions. J. Complex Anal. 2014 (2014), Article ID 984135, 3 pages. DOI 10.1155/2014/984135 | MR 3173344 | Zbl 1310.30017
[31] M. O. Reade: On close-to-convex univalent functions. Mich. Math. J. 3 (1955), 59-62. DOI 10.1307/mmj/1031710535 | MR 0070715 | Zbl 0070.07302
[32] B. Şeker, S. S. Eker, B. Çekiç: On subclass of analytic functions associated with MillerRoss-type Poisson distribution series. Sahand Commun. Math. Anal. 19 (2022), 69-79. DOI 10.22130/scma.2022.551474.1091 | Zbl 1513.30085
[33] A. Shamaki, B. A. Frasin, T. M. Seoudy: Subclass of analytic functions related with Pascal distribution series. J. Math. 2022 (2022), Article ID 8355285, 5 pages. DOI 10.1155/2022/8355285 | MR 4392098
[34] H. Silverman: Starlike and convexity properties for hypergeometric functions. J. Math. Anal. Appl. 172 (1993), 574-581. DOI 10.1006/jmaa.1993.1044 | MR 1201006 | Zbl 0774.30015
[35] H. Silverman, E. M. Silvia: Subclasses of starlike functions subordinate to convex functions. Can. J. Math. 37 (1985), 48-61. DOI 10.4153/CJM-1985-004-7 | MR 0777038 | Zbl 0574.30015
[36] R. Themangani, S. Porwal, N. Magesh: Generalized hypergeometric distribution and its applications on univalent functions. J. Inequal. Appl. 2020 (2020), Article ID 249, 10 pages. DOI 10.1186/s13660-020-02515-5 | MR 4179869 | Zbl 1503.30047
[37] A. Wiman: Über die Nullstellen der Funktionen $E_{\alpha}(x)$. Acta Math. 29 (1905), 217-134. (In German.) DOI 10.1007/BF02403204 | MR 1555016 | JFM 36.0472.01
Affiliations: Basem Aref Frasin, Department of Mathematics, Faculty of Science, Al al-Bayt University, Mafraq, Jordan, e-mail: bafrasin@yahoo.com