Mathematica Bohemica, first online, pp. 1-22


On the disk-cyclic linear relations

Mohamed Amouch, Ali Ech-Chakouri, Hassane Zguitti

Received February 9, 2024.   Published online December 3, 2024.

Abstract:  The study of linear dynamical systems for linear relations was initiated by C.-C. Chen et al. in (2017). Then E. Abakumov et al. extended hypercyclicty to linear relations in (2018). We extend the concept of disk-cyclicity studied in M. Amouch, O. Benchiheb (2020), Z. Z. Jamil, M. Helal (2013), Y.-X. Liang, Z.-H. Zhou (2015), Z. J. Zeana (2002) for linear operators to linear relations.
Keywords:  hypercyclicity; linear relation; disk-cyclic linear relation; disk transitive linear relation
Classification MSC:  47A06, 47A16, 37B20

PDF available at:  Institute of Mathematics CAS

References:
[1] E. Abakumov, M. Boudabbous, M. Mnif: On hypercyclicity of linear relations. Result. Math. 73 (2018), Article ID 137, 17 pages. DOI 10.1007/s00025-018-0900-z | MR 3860909 | Zbl 1507.47003
[2] T. Álvarez: Quasi-Fredholm and semi-B-Fredholm linear relations. Mediterr. J. Math. 14 (2017), Article ID 22, 26 pages. DOI 10.1007/s00009-016-0828-z | MR 3590364 | Zbl 1476.47003
[3] T. Álvarez, S. Keskes, M. Mnif: On the structure of essentially semi-regular linear relations. Mediterr. J. Math. 16 (2019), Article ID 76, 20 pages. DOI 10.1007/s00009-019-1334-x | MR 3942866 | Zbl 1499.47003
[4] T. Alvarez, A. Sandovici: Regular linear relations on Banach spaces. Banach J. Math. Anal. 15 (2021), Article ID 4, 25 pages. DOI 10.1007/s43037-020-00092-9 | MR 4159771 | Zbl 1507.47004
[5] M. Amouch, O. Benchiheb: Diskcyclicity of sets of operators and applications. Acta Math. Sin., Engl. Ser. 36 (2020), 1203-1220. DOI 10.1007/s10114-020-9307-3 | MR 4174620 | Zbl 07334462
[6] N. Bamerni, A. Kiliçman: Operators with diskcyclic vectors subspaces. J. Taibah Univ. Sci. 9 (2015), 414-419. DOI 10.1016/j.jtusci.2015.02.020
[7] N. Bamerni, A. Kiliçman, M. S. M. Noorani: A review of some works in the theory of diskcyclic operators. Bull. Malays. Math. Soc. 39 (2016), 723-739. DOI 10.1007/s40840-015-0137-x | MR 3471344 | Zbl 1344.47004
[8] H. Bouaniza, Y. Chamkha, M. Mnif: Perturbation of semi-Browder linear relations by commuting Riesz operators. Linear Multilinear Algebra 66 (2018), 285-308. DOI 10.1080/03081087.2017.1298079 | MR 3750591 | Zbl 1502.47002
[9] E. Chafai, M. Mnif: Ascent and essential ascent spectrum of linear relations. Extr. Math. 31 (2016), 145-167. MR 3645262 | Zbl 1381.47005
[10] C.-C. Chen, J. A. Conejero, M. Kostić, M. Murillo-Arcila: Dynamics of multivalued linear operators. Open Math. 15 (2017), 948-958. DOI 10.1515/math-2017-0082 | MR 3674105 | Zbl 1459.47002
[11] R. Cross: Multivalued Linear Operators. Pure and Applied Mathematics 213. Marcel Dekker, New York (1998). MR 1631548 | Zbl 0911.47002
[12] K.-G. Grosse-Erdmann, A. Peris Manguillot: Linear Chaos. Universitext. Springer, Berlin (2011). DOI 10.1007/978-1-4471-2170-1 | MR 2919812 | Zbl 1246.47004
[13] Z. Z. Jamil, M. Helal: Equivalent between the criterion and the three open set's conditions in disk-cyclicity. Int. J. Contemp. Math. Sci. 8 (2013), 257-261. DOI 10.1007/978-1-4471-2170-1 | MR 3040831 | Zbl 1283.47013
[14] Y.-X. Liang, Z.-H. Zhou: Disk-cyclicity and codisk-cyclicity of certain shift operators. Oper. Matrices 9 (2015), 831-846. DOI 10.7153/oam-09-48 | MR 3447588 | Zbl 1347.47008
[15] Y.-X. Liang, Z.-H. Zhou: Disk-cyclic and codisk-cyclic tuples of the adjoint weighted composition operators on Hilbert spaces. Bull. Belg. Math. Soc. - Simon Stevin 23 (2016), 203-215. DOI 10.36045/bbms/1464710114 | MR 3507078 | Zbl 1384.47005
[16] M. Mnif, R. Neji: Kato decomposition theorem for linear pencils. Filomat 34 (2020), 1157-1166. DOI 10.2298/FIL2004157M | MR 4205477 | Zbl 1498.47033
[17] M. Mnif, A.-A. Ouled-Hmed: Local spectral theory and surjective spectrum of linear relations. Ukr. Math. J. 73 (2021), 255-275. DOI 10.1007/s11253-021-01920-3 | MR 4223547 | Zbl 07411045
[18] S. Rolewicz: On orbits of elements. Stud. Math. 32 (1969), 17-22. DOI 10.4064/sm-32-1-17-22 | MR 0241956 | Zbl 0174.44203
[19] A. Sandovici: On the adjoint of linear relations in Hilbert spaces. Mediterr. J. Math. 17 (2020), Article ID 68, 23 pages. DOI 10.1007/s00009-020-1503-y | MR 4070098 | Zbl 1442.47001
[20] Y. Wang, H.-G. Zeng: Disk-cyclic and codisk-cyclic weighted pseudo-shifts. Bull. Belg. Math. Soc. - Simon Stevin 25 (2018), 209-224. DOI 10.36045/bbms/1530065010 | MR 3819123 | Zbl 06916056
[21] Z. J. Zeana: Cyclic Phenomena of Operators on Hilbert Space: Ph.D. Thesis. University of Bagdad, Bagdad (2002).

Affiliations:   Mohamed Amouch, Department of Mathematics, Faculty of Science El Jadida, University Chouaib Doukkali, Route Ben Maachou, 24000, El Jadida, Morocco, e-mail: amouch.m@ucd.ac.ma; Ali Ech-Chakouri, Hassane Zguitti (corresponding author), Department of Mathematics, Dhar El Mahraz Faculty of Science, Sidi Mohamed Ben Abdellah University, 30003 Fez, Morocco, e-mail: ali.echchakouri@usmba.ac.ma, hassane.zguitti@usmba.ac.ma


 
PDF available at: