Mathematica Bohemica, first online, pp. 1-23


Structure of the unit group of the group algebras of non-metabelian groups of order 128

Navamanirajan Abhilash, Elumalai Nandakumar, Rajendra Kumar Sharma, Gaurav Mittal

Received February 3, 2023.   Published online May 6, 2024.

Abstract:  We characterize the unit group for the group algebras of non-metabelian groups of order 128 over the finite fields whose characteristic does not divide the order of the group. Up to isomorphism, there are 2328 groups of order 128 and only 14 of them are non-metabelian. We determine the Wedderburn decomposition of the group algebras of these non-metabelian groups and subsequently characterize their unit groups.
Keywords:  non-metabelian groups; finite field; group algebra; unit group
Classification MSC:  16U60, 20C05

PDF available at:  Institute of Mathematics CAS

References:
[1] N. Arvind, S. Panja: Unit group of some finite semisimple group algebras. J. Egypt. Math. Soc. 30 (2022), Article ID 17, 9 pages. DOI 10.1186/s42787-022-00151-0 | MR 4488226 | Zbl 1499.16055
[2] G. K. Bakshi, S. Gupta, I. B. S. Passi: The algebraic structure of finite metabelian group algebras. Commun. Algebra 43 (2015), 2240-2257. DOI 10.1080/00927872.2014.888566 | MR 3344186 | Zbl 1328.20004
[3] O. Broche, Á. del Río: Wedderburn decomposition of finite group algebra. Finite Fields Appl. 13 (2007), 71-79. DOI 10.1016/j.ffa.2005.08.002 | MR 2284667 | Zbl 1111.20005
[4] L. Creedon, J. Gildea: The structure of the unit group of the group algebra $\Bbb F_{2^k}D_8$. Can. Math. Bull. 54 (2011), 237-243. DOI 10.4153/CMB-2010-098-5 | MR 2884238 | Zbl 1242.16033
[5] R. A. Ferraz: Simple components of center of $FG/J(FG)$. Commun. Algebra 36 (2008), 3191-3199. DOI 10.1080/00927870802103503 | MR 2441107 | Zbl 1156.16019
[6] W. Gao, A. Geroldinger, F. Halter-Koch: Group algebras of finite abelian groups and their applications to combinatorial problems. Rocky Mt. J. Math. 39 (2009), 805-823. DOI 10.1216/RMJ-2009-39-3-805 | MR 2505775 | Zbl 1200.05254
[7] GAP Group: GAP - Groups, Algorithms, Programming - a System for Computational Discrete Algebra. Version 4.12.2 (2022). Available at https://www.gap-system.org/. SW 320
[8] J. Gildea: The structure of the unit group of the group algebra $\Bbb{F}_{2^k}A_4$. Czech. Math. J. 61 (2011), 531-539. DOI 10.1007/s10587-011-0071-5 | MR 2905421 | Zbl 1237.16035
[9] J. Gildea, F. Monaghan: Units of some group algebras of groups of order 12 over any finite field of characteristic 3. Algebra Discrete Math. 11 (2011), 46-58. MR 2868359 | Zbl 1256.16023
[10] T. Hurley: Group rings and rings of matrices. Int. J. Pure Appl. Math. 31 (2006), 319-335. MR 2266951 | Zbl 1136.20004
[11] T. Hurley: Convolutional codes from units in matrix and group rings. Int. J. Pure Appl. Math. 50 (2009), 431-463. MR 2490664 | Zbl 1173.94452
[12] P. Hurley, T. Hurley: Codes from zero-divisors and units in group rings. Int. J. Inf. Coding Theory 1 (2009), 55-87. DOI 10.1504/IJICOT.2009.024047 | MR 2747648 | Zbl 1213.94194
[13] M. Khan, R. K. Sharma, J. B. Srivastava: The unit group of $FS_4$. Acta Math. Hung. 118 (2008), 105-113. DOI 10.1007/s10474-007-6169-4 | MR 2378543 | Zbl 1156.16024
[14] Y. Kumar, R. K. Sharma, J. B. Srivastava: The structure of the unit group of the group algebra $\Bbb{F}S_5$ where $\Bbb{F}$ is a finite field with char $\Bbb{F}= p>5$. Acta Math. Acad. Paedagog. Nyházi. (N.S.) 33 (2017), 187-193. MR 3896785 | Zbl 1413.16053
[15] S. Maheshwari, R. K. Sharma: The unit group of the group algebra $\Bbb{F}_qSL(2;\Bbb{Z}_3)$. J. Algebra Comb. Discrete Struct. Appl. 3 (2016), 1-6. DOI 10.13069/jacodesmath.83854 | MR 3450932 | Zbl 1429.16027
[16] N. Makhijani, R. K. Sharma, J. B. Srivastava: A note on units in $\Bbb{F}_{p^m}D_{2p^n}$. Acta Math. Acad. Paedagog. Nyházi. (N.S.) 30 (2014), 17-25. MR 3285078 | Zbl 1324.16035
[17] N. Makhijani, R. K. Sharma, J. B. Srivastava: The unit group of finite group algebra of a generalized dihedral group. Asian-Eur. J. Math. 7 (2014), Article ID 1450034, 5 pages. DOI 10.1142/S179355711450034X | MR 3225093 | Zbl 1301.16044
[18] N. Makhijani, R. K. Sharma, J. B. Srivastava: The unit group of $\Bbb{F}_q[D_{30}]$. Serdica Math. J. 41 (2015), 185-198. MR 3363601 | Zbl 1488.16060
[19] N. Makhijani, R. K. Sharma, J. B. Srivastava: A note on the structure of $\Bbb{F}_{p^k}A_5/J(\Bbb{F}_{p^k}A_5)$. Acta Sci. Math. 82 (2016), 29-43. DOI 10.14232/actasm-014-311-2 | MR 3526335 | Zbl 1399.16065
[20] G. Mittal, R. K. Sharma: On unit group of finite group algebras of non-metabelian groups up to order 72. Math. Bohem. 146 (2021), 429-455. DOI 10.21136/MB.2021.0116-19 | MR 4336549 | Zbl 1513.16041
[21] G. Mittal, R. K. Sharma: On unit group of finite semisimple group algebras of non-metabelian groups of order 108. J. Algebra Comb. Discrete Struct. Appl. 8 (2021), 59-71. DOI 10.13069/jacodesmath.935938 | MR 4263329 | Zbl 1494.16038
[22] G. Mittal, R. K. Sharma: Unit group of semisimple group algebras of some non-metabelian groups of order 120. Asian-Eur. J. Math. 15 (2022), Article ID 2250059, 11 pages. DOI 10.1142/S1793557122500590 | MR 4404211 | Zbl 1492.16039
[23] G. Mittal, R. K. Sharma: The unit groups of semisimple group algebras of some non-metabelian groups of order 144. Math. Bohem. 148 (2023), 631-646. DOI 10.21136/MB.2022.0067-22 | MR 4673842 | Zbl 7790608
[24] A. Olivieri, Á. del Río: An algorithm to compute the primitive central idempotents and the Wedderburn decomposition of a rational group algebra. J. Symb. Comput. 35 (2003), 673-687. DOI 10.1016/S0747-7171(03)00035-X | MR 1981041 | Zbl 1050.16015
[25] G. Pazderski: The orders to which only belong metabelian groups. Math. Nachr. 95 (1980), 7-16. DOI 10.1002/mana.19800950102 | MR 0592878 | Zbl 0468.20018
[26] C. Polcino Milies, S. K. Sehgal: An Introduction to Group Rings. Algebras and Applications 1. Kluwer Academic, Dordrecht (2002). DOI 10.1007/978-94-010-0405-3 | MR 1896125 | Zbl 0997.20003
[27] R. K. Sharma, G. Mittal: On the unit group of a semisimple group algebra $\Bbb{F}_qSL(2,\Bbb{Z}_5)$. Math. Bohem. 147 (2022), 1-10. DOI 10.21136/MB.2021.0104-20 | MR 4387464 | Zbl 1513.16042
[28] R. K. Sharma, J. B. Srivastava, M. Khan: The unit group of $\Bbb{F}A_4$. Publ. Math. Debr. 71 (2007), 21-26. MR 2340031 | Zbl 1135.16033
[29] R. K. Sharma, J. B. Srivastava, M. Khan: The unit group of $\Bbb{F}S_3$. Acta Math. Acad. Paedagog. Niházi. (N.S.) 23 (2007), 129-142. MR 2368934 | Zbl 1135.16034
[30] R. K. Sharma, P. Yadav: The unit group of $\Bbb{Z}_pQ_8$. Algebras Groups Geom. 25 (2008), 425-429. MR 2526898 | Zbl 1171.16303
[31] G. Tang, Y. Wei, Y. Li: Units groups of group algebras of some small groups. Czech. Math. J. 64 (2014), 149-157. DOI 10.1007/s10587-014-0090-0 | MR 3247451 | Zbl 1340.16040

Affiliations:   Navamanirajan Abhilash, Elumalai Nandakumar, Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur - 603203, Tamil Nadu, India, e-mail: an1295@srmist.edu.in, {nanda1611@gmail.com}; Rajendra Kumar Sharma, Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi - 110016, India, e-mail: rksharmaiitd@gmail.com; Gaurav Mittal (corresponding author), Defence Research and Development Organization, Near Metcalfe House, New Delhi - 110054, India, e-mail: gaurav.mittaltwins@yahoo.com


 
PDF available at: