Mathematica Bohemica, first online, pp. 1-29


Nörlund means of the sequence of the iterates of a bounded linear operator, and spectral properties

Laura Burlando

Received June 15, 2024.   Published online December 9, 2024.

Abstract:  We are concerned here with relating the spectral properties of a bounded linear operator $T$ on a Banach space to the behaviour of the means $(1/{s(n)})\sum_{k=0}^n(\Delta s)(n-k)T^k$, where $s$ is a nondecreasing sequence of positive real numbers, and $\Delta$ denotes the inverse of the automorphism on the vector space of scalar sequences which maps each sequence into the sequence of its partial sums. In a previous paper, we obtained a uniform ergodic theorem for the means above, under the hypotheses $\lim_{n\rightarrow\infty}s(n)=\infty$, $\lim_{n\rightarrow\infty}{s(n+1)}/{s(n)}=1$, and $\Delta^qs\in\ell_1$ for a positive integer $q$: indeed, we proved that if $T^n/s(n)$ converges to zero in the uniform operator topology for such a sequence $s$, then the averages above converge in the same topology if and only if 1 is either in the resolvent set of $T$, or a simple pole of the resolvent function of $T$. In this paper, we prove that if $\liminf_{n\rightarrow\infty}{s(n+1)}/{s(n)}=1$, and the averages above converge in the uniform operator topology, then $1$ is either in the resolvent set of $T$, or a simple pole of the resolvent function of $T$. The converse is not true, even if the sequence $s$ satisfies all the hypotheses of the theorem recalled above, except membership of $\Delta^qs$ in $\ell_1$ for a positive integer $q$. We also prove that if $\dsmash{\lim_{n\rightarrow\infty}}\root nøf{s(n)}=1$, and the function $h_s(z)=\sum_{n=0}^{\infty}s(n)z^n$ has no zeros in the open unit disk, then operator norm boundedness of the averages of the sequence $T^n$induced by $s$ implies that the spectral radius of $T$ is less than or equal to $1$. This result fails if the assumption about $h_s$ is dropped. Indeed, it may happen that the averages converge in the uniform operator topology for a sequence $s$ satisfying $\lim_ {n\rightarrow\infty}s(n)=\infty$, $\lim_{n\rightarrow\infty} {s(n+1)}/{s(n)}=1$, and $\Delta^qs\in l_1$ for a positive integer $q$, and nevertheless the spectral radius of $T$ is strictly larger than $1$.
Keywords:  bounded linear operator; uniform ergodic theorem; Nörlund means of operator iterates; spectrum; pole of the resolvent
Classification MSC:  47A35, 47A10

PDF available at:  Institute of Mathematics CAS

References:
[1] G. R. Allan, T. J. Ransford: Power-dominated elements in a Banach algebra. Stud. Math. 94 (1989), 63-79. DOI 10.4064/sm-94-1-63-79 | MR 1008239 | Zbl 0705.46021
[2] L. Burlando: A uniform ergodic theorem for some Nörlund means. Commun. Math. Anal. 21 (2018), 1-34. MR 3866091 | Zbl 07002173
[3] J. B. Conway: Functions of One Complex Variable. Graduate Texts in Mathematics 11. Springer, New York (1978). DOI 10.1007/978-1-4612-6313-5 | MR 0503901 | Zbl 0277.30001
[4] N. Dunford: Spectral theory. I. Convergence to projections. Trans. Am. Math. Soc. 54 (1943), 185-217. DOI 10.1090/S0002-9947-1943-0008642-1 | MR 0008642 | Zbl 0063.01185
[5] N. Dunford: Spectral theory. Bull. Am. Math. Soc. 49 (1943), 637-651. DOI 10.1090/S0002-9904-1943-07965-7 | MR 0008643 | Zbl 0063.01184
[6] E. Ed-dari: On the $(C,\alpha)$ uniform ergodic theorem. Stud. Math. 156 (2003), 3-13. DOI 10.4064/sm156-1-1 | MR 1961058 | Zbl 1052.47005
[7] P. R. Halmos: A Hilbert Space Problem Book. D. Van Nostrand, Princeton (1967). MR 0208368 | Zbl 0144.38704
[8] E. Hille: Remarks on ergodic theorems. Trans. Am. Math. Soc. 57 (1945), 246-269. DOI 10.1090/S0002-9947-1945-0012212-0 | MR 0012212 | Zbl 0063.02017
[9] E. Hille, R. S. Phillips: Functional Analysis and Semi-Groups. American Mathematical Society Colloquium Publications 31. AMS, Providence (1957). DOI 10.1090/coll/031 | MR 0089373 | Zbl 0078.10004
[10] K. B. Laursen, M. Mbekhta: Operators with finite chain length and the ergodic theorem. Proc. Am. Math. Soc. 123 (1995), 3443-3448. DOI 10.1090/S0002-9939-1995-1277123-9 | MR 1277123 | Zbl 0849.47008
[11] M. Lin: On the uniform ergodic theorem. Proc. Am. Math. Soc. 43 (1974), 337-340. DOI 10.1090/S0002-9939-1974-0417821-6 | MR 0417821 | Zbl 0252.47004
[12] M. Lin, D. Shoikhet, L. Suciu: Remarks on uniform ergodic theorems. Acta Sci. Math. 81 (2015), 251-283. DOI 10.14232/actasm-012-307-4 | MR 3381884 | Zbl 1363.47015
[13] M. Mbekhta, J. Zemánek: Sur le théorème ergodique uniforme et le spectre. C. R. Acad. Sci. Paris, Sér. I 317 (1993), 1155-1158. (In French.) MR 1257230 | Zbl 0792.47006
[14] W. Rudin: Principles of Mathematical Analysis. McGraw-Hill, New York (1976). MR 0385023 | Zbl 0346.26002
[15] A. E. Taylor, D. C. Lay: Introduction to Functional Analysis. John Wiley & Sons, New York (1980). MR 0564653 | Zbl 0501.46003
[16] T. Yoshimoto: Uniform and strong ergodic theorems in Banach spaces. Ill. J. Math. 42 (1998), 525-543. DOI 10.1215/ijm/1255985459 | MR 1648580 | Zbl 0924.47005
[17] A. Zygmund: Trigonometric Series Volumes I & II Combined. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2002). DOI 10.1017/CBO9781316036587 | MR 1963498 | Zbl 1084.42003

Affiliations:   Laura Burlando, Dipartimento di Matematica dell'Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy, e-mail: laura.burlando@unige.it


 
PDF available at: