Mathematica Bohemica, first online, pp. 1-15


On the hyper-order of analytic solutions of linear differential equations near a finite singular point

Meryem Chetti, Karima Hamani

Received May 09, 2023.   Published online March 21, 2024.

Abstract:  We study the hyper-order of analytic solutions of linear differential equations with analytic coefficients having the same order near a finite singular point. We improve previous results given by S. Cherief and S. Hamouda (2021). We also consider the nonhomogeneous linear differential equations.
Keywords:  linear differential equation; hyper-order; a finite singular point; Nevanlinna theory
Classification MSC:  34M10, 30D35

PDF available at:  Institute of Mathematics CAS

References:
[1] I. Amemiya, M. Ozawa: Non-existence of finite order solutions of $\omega"+e^{-z}\omega'+Q(z)\omega=0$. Hokkaido Math. J. 10 (1981), 1-17. DOI 10.14492/hokmj/1381758109 | MR 0662294 | Zbl 0554.34003
[2] Z. Chen: The growth of solutions of $f"+e^{-z}f'+Q(z)f=0$, where the order $(Q)=1$. Sci China, Ser. A 45 (2002), 290-300. MR 1903625 | Zbl 1054.34139
[3] Z. Chen, K. Shon: On the growth of solutions of a class of higher order differential equations. Acta Math. Sci., Ser. B, Engl. Ed. 24 (2004), 52-60. DOI 10.1016/S0252-9602(17)30359-4 | MR 2036062 | Zbl 1056.30029
[4] S. Cherief, S. Hamouda: Linear differential equations with analytic coefficients having the same order near a singular point. Bull. Iran. Math. Soc. 47 (2021), 1737-1749. DOI 10.1007/s41980-020-00469-4 | MR 4329925 | Zbl 1474.34617
[5] S. Cherief, S. Hamouda: Growth of solutions of a class of linear differential equations near a singular point. Kragujevac J. Math. 47 (2023), 187-201. DOI 10.46793/KgJMat2302.187C | MR 4592794 | Zbl 07721838
[6] H. Fettouch, S. Hamouda: Growth of local solutions to linear differential around an isolated essential singularity. Electron. J. Diff. Equs. 2016 (2016), Article ID 226, 10 pages. MR 3547415 | Zbl 1352.34113
[7] S. Hamouda: The possible orders of growth of solutions to certain linear differential equations near a singular points. J. Math. Anal. Appl. 458 (2018), 992-1008. DOI 10.1016/j.jmaa.2017.10.005 | MR 3724712 | Zbl 1382.34097
[8] W. K. Hayman: The local growth of power series: A survey of the Wiman-Valiron method. Can. Math. Bull. 17 (1974), 317-358. DOI 10.4153/CMB-1974-064-0 | MR 0385095 | Zbl 0314.30021
[9] K.-H. Kwon: Nonexistence of finite order solutions of certain second order linear differential equations. Kodai Math. J. 19 (1996), 378-387. DOI 10.2996/kmj/1138043654 | MR 1418569 | Zbl 0879.34006
[10] I. Laine: Nevanlinna Theory and Complex Differential Equations. de Gruyter Studies in Mathematics 15. Walter de Gruyter, Berlin (1993). DOI 10.1515/9783110863147 | MR 1207139 | Zbl 0784.30002

Affiliations:   Meryem Chetti, Karima Hamani (correspoding author), Laboratory of Pure and Applied Mathematics, Department of Mathematics, Faculty of Exact Sciences and Computer Science, University of Mostaganem (UMAB), Site 2, Zaghloul, Mostaganem, Algeria, e-mail: meryem.chetti.etu@univ-mosta.dz, karima.hamani@univ-mosta.dz


 
PDF available at: