Mathematica Bohemica, first online, pp. 1-12


Generalized derivations with power values on rings and Banach algebras

Abderrahman Hermas, Abdellah Mamouni, Lahcen Oukhtite

Received May 23, 2023.   Published online February 21, 2024.

Abstract:  Let $R$ be a prime ring and $I$ a nonzero ideal of $R.$ The purpose of this paper is to classify generalized derivations of $R$ satisfying some algebraic identities with power values on $I.$ More precisely, we consider two generalized derivations $F$ and $H$ of $R$ satisfying one of the following identities: (1) $aF(x)^mH(y)^m=x^ny^n$ for all $x,y \in I$, (2) $ (F(x)\circ H(y))^m=(x\circ y)^n$ for all $x,y \in I,$ for two fixed positive integers $m\geq1$, $n\geq1$ and $a$ an element of the extended centroid of $R$. Finally, as an application, the same identities are studied locally on nonvoid open subsets of a prime Banach algebra.
Keywords:  prime ring; generalized derivation; Banach algebra; Jacobson radical
Classification MSC:  16N60, 46J10, 16W25

PDF available at:  Institute of Mathematics CAS

References:
[1] F. F. Bonsall, J. Duncan: Complete Normed Algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete 80. Springer, New York (1973). DOI 10.1007/978-3-642-65669-9 | MR 0423029 | Zbl 0271.46039
[2] M. Brešar: Introduction to Noncommutative Algebra. Universitext. Springer, Cham (2014). DOI 10.1007/978-3-319-08693-4 | MR 3308118 | Zbl 1334.16001
[3] T. S. Erickson, W. S. Martindale III, J. M. Osborn: Prime nonassociative algebras. Pac. J. Math. 60 (1975), 49-63. DOI 10.2140/pjm.1975.60.49 | MR 0382379 | Zbl 0355.17005
[4] I. N. Herstein: Topics in Ring Theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1969). MR 0271135 | Zbl 0232.16001
[5] N. Jacobson: Structure of Rings. Colloquium Publications 37. AMS, Providence (1964). MR 0222106 | Zbl 0073.02002
[6] V. K. Kharchenko: Differential identities of prime rings. Algebra Logic 17 (1979), 155-168. DOI 10.1007/BF01670115 | MR 0541758 | Zbl 0423.16011
[7] C. Lanski: An Engel condition with derivation. Proc. Am. Math. Soc. 118 (1993), 731-834. DOI 10.1090/S0002-9939-1993-1132851-9 | MR 1132851 | Zbl 0821.16037
[8] T.-K. Lee: Semiprime rings with differential identities. Bull. Inst. Math., Acad. Sin. 20 (1992), 27-38. MR 1166215 | Zbl 0769.16017
[9] T.-K. Lee: Generalized derivations of left faithful rings. Commun. Algebra 27 (1999), 4057-4073. DOI 10.1080/00927879908826682 | MR 1700189 | Zbl 0946.16026
[10] W. S. Martindale III: Prime rings satisfying a generalized polynomial identity. J. Algebra 12 (1969), 576-584. DOI 10.1016/0021-8693(69)90029-5 | MR 0238897 | Zbl 0175.03102
[11] A. M. Sinclair: Continuous derivations on Banach algebras. Proc. Am. Math. Soc. 29 (1969), 166-170. DOI 10.1090/S0002-9939-1969-0233207-X | MR 0233207 | Zbl 0164.44603

Affiliations:   Abderrahman Hermas, Department of Mathematics, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco, e-mail: Abde.hermas@gmail.com; Abdellah Mamouni, Department of Mathematics, Faculty of Science, Moulay Ismail University, Meknes, Morocco, e-mail: a.mamouni.fste@gmail.com; Lahcen Oukhtite (corresponding author), Department of Mathematics, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco, e-mail: oukhtitel@hotmail.com


 
PDF available at: