Mathematica Bohemica, first online, pp. 1-19


Weighted Calderón-Hardy spaces

Pablo Rocha

Received June 20, 2023.   Published online October 7, 2024.

Abstract:  We present the weighted Calderón-Hardy spaces on Euclidean spaces and investigate their properties. As an application we show, for certain power weights, that the iterated Laplace operator is a bijection from these spaces onto classical weighted Hardy spaces. The main tools to achieve our result are an atomic decomposition of weighted Hardy spaces furnished by the author, fundamental solutions of iterated Laplacian and pointwise inequalities for certain maximal functions.
Keywords:  weighted Calderón-Hardy space; weighted Hardy space; atomic decomposition; Laplace operator
Classification MSC:  42B25, 42B30

PDF available at:  Institute of Mathematics CAS

References:
[1] P. Auscher, M. Egert: Hardy spaces for boundary value problems of elliptic systems with block structure. J. Geom. Anal. 31 (2021), 9182-9198. DOI 10.1007/s12220-021-00608-1 | MR 4302218 | Zbl 1473.35155
[2] P. Auscher, M. Egert: Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure. Progress in Mathematics 346. Birkhäuser, Cham (2023). DOI 10.1007/978-3-031-29973-5 | MR 4628043 | Zbl 07730807
[3] A. P. Calderón: Estimates for singular integral operators in terms of maximal functions. Stud. Math. 44 (1972), 563-582. DOI 10.4064/sm-44-6-563-582 | MR 348555 | Zbl 0222.44007
[4] R. R. Coifman: A real variable characterization of $H^p$. Stud. Math. 51 (1974), 269-274. DOI 10.4064/sm-51-3-269-274 | MR 358318 | Zbl 0289.46037
[5] D. V. Cruz-Uribe, A. Fiorenza: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham (2013). DOI 10.1007/978-3-0348-0548-3 | MR 3026953 | Zbl 1268.46002
[6] D. V. Cruz-Uribe, J. M. Martell, C. Pérez: Weights, Extrapolation and the Theory of Rubio de Francia. Operator Theory: Advances and Applications 215. Birkhäuser, Basel (2011). DOI 10.1007/978-3-0348-0072-3 | MR 2797562 | Zbl 1234.46003
[7] D. V. Cruz-Uribe, D. Wang: Variable Hardy spaces. Indiana Univ. Math. J. 63 (2014), 447-493. DOI 10.1512/iumj.2014.63.5232 | MR 3233216 | Zbl 1311.42053
[8] L. Diening, P. Harjulehto, P. Hästö, M. Růžička: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017. Springer, Berlin (2011). DOI 10.1007/978-3-642-18363-8 | MR 2790542 | Zbl 1222.46002
[9] C. L. Fefferman, E. M. Stein: $H^p$ spaces of several variables. Acta Math. 129 (1972), 137-193. DOI 10.1007/BF02392215 | MR 447953 | Zbl 0257.46078
[10] J. García-Cuerva: Weighted $H^p$ spaces. Diss. Math. 162 (1979), 1-63. MR 549091 | Zbl 0434.42023
[11] J. García-Cuerva, J. L. Rubio de Francia: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies 116. North-Holland, Amsterdam (1985). DOI 10.1016/s0304-0208(08)x7154-3 | MR 807149 | Zbl 0578.46046
[12] A. B. Gatto, C. Segovia, J. G. Jiménez,: On the solution of the equation $\Delta^mF = f$ for $f \in H^p$. Conference on Harmonic Analysis in honor of Antoni Zygmund, Volume II. Wadsworth International Group, Belmont (1983). MR 0730081 | Zbl 0504.35040
[13] I. M. Gel'fand, G. E. Shilov: Generalized Functions. Volume 1. Properties and Operations. Academic Press, New York (1964). MR 0166596 | Zbl 0115.33101
[14] L. Grafakos: Classical Fourier Analysis. Graduate Texts in Mathematics 249. Springer, New York (2014). DOI 10.1007/978-1-4939-1194-3 | MR 3243734 | Zbl 1304.42001
[15] L. Grafakos: Modern Fourier Analysis. Graduate Texts in Mathematics 250. Springer, New York (2014). DOI 10.1007/978-1-4939-1230-8 | MR 3243741 | Zbl 1304.42002
[16] O. Kováčik, J. Rákosník: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. DOI 10.21136/CMJ.1991.102493 | MR 1134951 | Zbl 0784.46029
[17] R. H. Latter: A characterization of $H^p(\Bbb{R}^n)$ in terms of atoms. Stud. Math. 62 (1978), 93-101. DOI 10.4064/sm-62-1-93-101 | MR 482111 | Zbl 0398.42017
[18] S. Lu: Four Lectures on Real $H^p$ Spaces. World Scientific, Singapore (1995). DOI 10.1142/2650 | MR 1342077 | Zbl 0839.42005
[19] B. Muckenhoupt: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165 (1972), 207-226. DOI 10.1090/S0002-9947-1972-0293384-6 | MR 293384 | Zbl 0236.26016
[20] E. Nakai, Y. Sawano: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262 (2012), 3665-3748. DOI 10.1016/j.jfa.2012.01.004 | MR 2899976 | Zbl 1244.42012
[21] S. Ombrosi: On spaces associated with primitives of distributions in one-sided Hardy spaces. Rev. Unión Mat. Argent. 42 (2001), 81-102. MR 1969626 | Zbl 1196.42023
[22] S. Ombrosi, A. Perini, R. Testoni: An interpolation theorem between Calderón-Hardy spaces. Rev. Unión Mat. Argent. 58 (2017), 1-19. MR 3665895 | Zbl 1369.42013
[23] S. Ombrosi, C. Segovia: One-sided singular integral operators on Calderón-Hardy spaces. Rev. Unión Mat. Argent. 44 (2003), 17-32. MR 2051035 | Zbl 1078.42008
[24] W. Orlicz: Über konjugierte Exponentenfolgen. Stud. Math. 3 (1931), 200-211 (In German.). DOI 10.4064/sm-3-1-200-211 | Zbl 0003.25203
[25] A. Perini: Boundedness of one-sided fractional integrals in the one-sided Calderón-Hardy spaces. Commentat. Math. Univ. Carol. 52 (2011), 57-75. MR 2828370 | Zbl 1240.42061
[26] P. Rocha: Calderón-Hardy spaces with variable exponents and the solution of the equation $\Delta^mF=f$ for $f \in H^{p(\cdot)}(\Bbb{R}^n)$. Math. Inequal. Appl. 19 (2016), 1013-1030. DOI 10.7153/mia-19-75 | MR 3535220 | Zbl 1350.42040
[27] P. Rocha: On the atomic and molecular decomposition of weighted Hardy spaces. Rev. Unión Mat. Argent. 61 (2020), 229-247. DOI 10.33044/revuma.v61n2a03 | MR 4198908 | Zbl 1467.42034
[28] E. M. Stein: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series 30. Princeton University Press, Princeton (1970). DOI 10.1515/9781400883882 | MR 0290095 | Zbl 0207.13501
[29] E. M. Stein: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series 43. Princeton University Press, Princeton (1993). DOI 10.1515/9781400883929 | MR 1232192 | Zbl 0821.42001
[30] E. M. Stein, G. Weiss: On the theory of harmonic functions of several variables I. The theory of $H^p$ spaces. Acta Math. 103 (1960), 25-62. DOI 10.1007/BF02546524 | MR 121579 | Zbl 0097.28501
[31] J.-O. Strömberg, A. Torchinsky: Weighted Hardy Spaces. Lecture Notes in Mathematics 1381. Springer, Berlin (1989). DOI 10.1007/BFb0091154 | MR 1011673 | Zbl 0676.42021
[32] M. H. Taibleson, G. Weiss: The molecular characterization of certain Hardy spaces. Astérisque 77 (1980), 67-149. MR 604370 | Zbl 0472.46041
[33] A. Uchiyama: Hardy Spaces on the Euclidean Space. Springer Monographs in Mathematics. Springer, Berlin (2001). DOI 10.1007/978-4-431-67905-9 | MR 1845883 | Zbl 0984.42015

Affiliations:   Pablo Rocha, Departamento de Matemática, Universidad Nacional del Sur, Av. Alem 1253 - Bahía Blanca 8000, Buenos Aires, Argentina, e-mail: pablo.rocha@uns.edu.ar


 
PDF available at: