Sufficient conditions to determine the linear dependency of two meromorphic functions
Arpita Kundu, Abhijit Banerjee
Received September 6, 2023. Published online October 10, 2024.
Abstract: We comprehensively explore the generalized concept of sharing sets to establish conditions for the linear dependency of two meromorphic functions. By applying this approach, we significantly extend and enhance the existing results related to URSM (unique range set of meromorphic functions). It is well known that URSMs can be represented as zeros of specific polynomials. However, our findings demonstrate that the concept of URSM can be understood from a broader perspective, where it can be characterized as a special case of the zero sets of two interconnected polynomials. Such investigations have not been conducted before, thus the text breaks the barriers of the traditional definition of URSM.
Keywords: meromorphic function; unique range set; weighted shared sets wider sense; linear dependency
References: [1] A. Banerjee: Uniqueness of meromorphic functions sharing two sets with finite weight. II. Tamkang. J. Math. 41 (2010), 379-392. MR 2789974 | Zbl 1213.30052
[2] A. Banerjee: A new class of strong uniqueness polynomials satisfying Fujimoto's condition. Ann. Acad. Sci. Fenn., Math. 40 (2015), 465-474. DOI 10.5186/aasfm.2015.4025 | MR 3329155 | Zbl 1331.30019
[3] A. Banerjee: Fujimoto's theorem - a further study. J. Contemp. Math. Anal., Armen. Acad. Sci. 51 (2016), 199-207. DOI 10.3103/S1068362316040051 | MR 3586636 | Zbl 1362.30040
[4] A. Banerjee, P. Bhattacharjee: Uniqueness of derivatives of meromorphic functions sharing two or three sets. Turk. J. Math. 34 (2010), 21-34. DOI 10.3906/mat-0806-7 | MR 2654413 | Zbl 1189.30064
[5] A. Banerjee, P. Bhattacharjee: Uniqueness and set sharing of derivatives of meromorphic functions. Math. Slovaca 61 (2011), 197-214. DOI 10.2478/s12175-011-0005-6 | MR 2786694 | Zbl 1265.30141
[6] A. Banerjee, B. Chakraborty: Further results on the uniqueness of meromorphic functions and their derivative counterpart sharing one or two sets. Jordan J. Math. Stat. 9 (2016), 117-139. MR 3511542 | Zbl 1362.30041
[7] A. Banerjee, I. Lahiri: A uniqueness polynomial generating a unique range set and vice versa. Comput. Methods Funct. Theory 12 (2012), 527-539. DOI 10.1007/BF03321842 | MR 3058521 | Zbl 1283.30064
[8] A. Banerjee, S. Mallick: On the characterisations of a new class of strong uniqueness polynomials generating unique range sets. Comput. Methods Funct. Theory 17 (2017), 19-45. DOI 10.1007/s40315-016-0174-y | MR 3620877 | Zbl 1364.30035
[9] S. Bartels: Meromorphic functions sharing a set with 17 elements ignoring multiplicities. Complex Variables, Theory Appl. 39 (1999), 85-92. DOI 10.1080/17476939908815183 | MR 1697581 | Zbl 1019.30030
[10] B. Chen, Z. Li, S. Li: Uniqueness of the meromorphic function sharing two values with its derivatives. Pure Math. 8 (2018), 378-382 (In Chinese.). DOI 10.12677/PM.2018.84051
[11] M.-L. Fang, I. Lahiri: Unique range set for certain meromorphic functions. Indian J. Math. 45 (2003), 141-150. MR 2035902 | Zbl 1048.30014
[12] G. Frank, M. Reinders: A unique range set for meromorphic functions with 11 elements. Complex Variables, Theory Appl. 37 (1998), 185-193. DOI 10.1080/17476939808815132 | MR 1687880 | Zbl 1054.30519
[13] H. Fujimoto: On uniqueness polynomials for meromorphic functions. Nagoya Math. J. 170 (2003), 33-46. DOI 10.1017/S0027763000008527 | MR 1994886 | Zbl 1046.30011
[14] F. Gross: Factorization of meromorphic functions and some open problems. Complex Analysis Lecture Notes in Mathematics 599. Springer, Berlin (1977), 51-69. DOI 10.1007/BFb0096825 | MR 0444914 | Zbl 0347.00005
[15] F. Gross, C. C. Yang: On preimage and range sets of meromorphic functions. Proc. Japan Acad., Ser. A 58 (1982), 17-20. DOI 10.3792/pjaa.58.17 | MR 0649056 | Zbl 0501.30026
[16] W. K. Hayman: Meromorphic Functions. Oxford Mathematical Monographs. Clarendon Press, Oxford (1964). MR 0164038 | Zbl 0115.06203
[17] I. Lahiri: Weighted sharing and uniqueness of meromorphic functions. Nagoya Math. J. 161 (2001), 193-206. DOI 10.1017/S0027763000027215 | MR 1820218 | Zbl 0981.30023
[18] I. Lahiri: Weighted value sharing and uniqueness of meromorphic functions. Complex Variables, Theory Appl. 46 (2001), 241-253. DOI 10.1080/17476930108815411 | MR 1869738 | Zbl 1025.30027
[19] Y. Li, W. Lin: Set sharing results for derivatives of meromorphic functions. J. Math. Res. Appl. 42 (2022), 587-598. DOI 10.3770/j.issn:2095-2651.2022.06.004 | MR 4503963 | Zbl 1513.30152
[20] P. Li, C.-C. Yang: Some further results on the unique range sets of meromorphic functions. Kodai Math. J. 18 (1995), 437-450. DOI 10.2996/kmj/1138043482 | MR 1362919 | Zbl 0849.30025
[21] A. Z. Mokhon'ko: The Nevanlinna characteristics of certain meromorphic functions. Teor. Funkts., Funkts. Anal. Prilozh. 14 (1971), 83-87 (In Russian.). MR 0298006 | Zbl 0237.30030
[22] F. Pakovitch: Sur un problème d'unicité pour les fonctions méromorphes. C. R. Acad. Sci., Paris, Sér. I 323 (1996), 745-748 (In French.). MR 1416169 | Zbl 0891.30017
[23] G. Qiu: Uniqueness of entire functions that share some small functions. Kodai Math. J. 23 (2000), 1-11. DOI 10.2996/kmj/1138044152 | MR 1749381 | Zbl 1121.30307
[24] C. C. Yang: Open problems. Complex Analysis. Lecture Notes in Pure Applied Mathematics 36. Marcel Dekker, New York (1978), 169-170. MR 0492217 | Zbl 0381.30003
[25] H.-X. Yi: Uniqueness of meromorphic functions and question of Gross. Sci. China, Ser. A 37 (1994), 802-813. MR 1324763 | Zbl 0821.30024
[26] H.-X. Yi: Unicity theorems for meromorphic or entire functions. III. Bull. Aust. Math. Soc. 53 (1996), 71-82. DOI 10.1017/S0004972700016737 | MR 1371914 | Zbl 0855.30025
[27] H. Yi: The reduced unique range sets for entire or meromorphic functions. Complex Variables, Theory Appl. 32 (1997), 191-198. DOI 10.1080/17476939708814990 | MR 1457685 | Zbl 0881.30026
[28] H. Yi, W. Lü: Meromorphic functions that share two sets. II. Acta Math. Sci., Ser. B, Engl. Ed. 24 (2004), 83-90. DOI 10.1016/S0252-9602(17)30363-6 | MR 2036066 | Zbl 1140.30315
Affiliations: Arpita Kundu (corresponding author), Abhijit Banerjee, Department of Mathematics, University of Kalyani, Kalyani, Nadia-741235, West Bengal, India, e-mail: arpitakundu.math.ku@gmail.com, abanerjee_kal@yahoo.co.in