Mathematica Bohemica, first online, pp. 1-18


On common index divisors and monogenity of septic number fields defined by trinomials of type $x^7+ax^5+b$

Hamid Ben Yakkou

Received September 28, 2023.   Published online November 5, 2024.

Abstract:  Let $K $ be a septic number field generated by a root $\theta$ of an irreducible polynomial $ F(x)= x^7+ax^5+b \in\mathbb Z[x]$. In this paper, we explicitly characterize the index $i(K)$ of $K$. More precisely, for all $a$ and $b$, we show that $i(K) \in\{1, 2\}$. Our results answer completely to Problem 22 of W. Narkiewicz's book (2004) for these families of number fields. In particular, we provide sufficient conditions for which $K$ is not monogenic. We illustrate our results by some computational examples.
Keywords:  monogenity; power integral basis; theorem of Ore; prime ideal factorization; common index divisor; Newton polygon
Classification MSC:  11R04, 11R16, 11R21, 11Y40

PDF available at:  Institute of Mathematics CAS

References:
[1] S. Ahmad, T. Nakahara, A. Hameed: On certain pure sextic fields related to a problem of Hasse. Int. J. Algebra Comput. 26 (2016), 577-583. DOI 10.1142/S0218196716500259 | MR 3506350 | Zbl 1404.11124
[2] S. Ahmad, T. Nakahara, S. M. Husnine: Power integral bases for certain pure sextic fields. Int. J. Number Theory 10 (2014), 2257-2265. DOI 10.1142/S1793042114500778 | MR 3273484 | Zbl 1316.11094
[3] H. Ben Yakkou: On nonmonogenic number fields defined by trinomials of type $x^n+ax^m+b$. Rocky Mt. J. Math. 53 (2023), 685-699. DOI 10.1216/rmj.2023.53.685 | MR 4617905 | Zbl 07731139
[4] H. Ben Yakkou, B. Boudine: On the index of the octic number field defined by $x^8+ax+b$. Acta Math. Hung. 170 (2023), 585-607. DOI 10.1007/s10474-023-01353-3 | MR 4643856 | Zbl 07745824
[5] H. Ben Yakkou, J. Didi: On monogenity of certain pure number fields of degrees $2^r\cdot3^k\cdot7^s$. Math. Bohem. 149 (2024), 167-183. DOI 10.21136/MB.2023.0071-22 | MR 4767006 | Zbl 7893417
[6] H. Ben Yakkou, L. El Fadil: On monogenity of certain pure number fields defined by $x^{p^r}-m$. Int. J. Number Theory 17 (2021), 2235-2242. DOI 10.1142/S1793042121500858 | MR 4322831 | Zbl 1483.11236
[7] Y. Bilu, I. Gaál, K. Győry: Index form equations in sextic fields: A hard computation. Acta Arith. 115 (2004), 85-96. DOI 10.4064/aa115-1-7 | MR 2102808 | Zbl 1064.11084
[8] H. Cohen: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics 138. Springer, Berlin (1993). DOI 10.1007/978-3-662-02945-9 | MR 1228206 | Zbl 0786.11071
[9] C. T. Davis, B. K. Spearman: The index of quartic field defined by a trinomial $X^4+aX+b$. J. Algebra Appl. 17 (2018), Article ID 1850197, 18 pages. DOI 10.1142/S0219498818501979 | MR 3866770 | Zbl 1437.11149
[10] R. Dedekind: Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen. Abh. König. Gesell. Wiss. Gött. 23 (1878), 202-232. (In German.)
[11] H. T. Engstrom: On the common index divisors of an algebraic field. Trans. Am. Math. Soc. 32 (1930), 223-237. DOI 10.2307/1989492 | MR 1501535 | JFM 56.0885.04
[12] J.-H. Evertse, K. Győry: Unit Equations in Diophantine Number Theory. Cambridge Studies in Advanced Mathematics 146. Cambridge University Press, Cambridge (2015). DOI 10.1017/CBO9781316160749 | MR 3524535 | Zbl 1339.11001
[13] J.-H. Evertse, K. Győry: Discriminant Equations in Diophantine Number Theory. New Mathematical Monographs 32. Cambridge University Press, Cambridge (2017). DOI 10.1017/CBO9781316160763 | MR 3586280 | Zbl 1361.11002
[14] I. Gaál: Diophantine Equations and Power Integral Bases: Theory and Algorithms. Birkhäuser, Cham (2019). DOI 10.1007/978-3-030-23865-0 | MR 3970246 | Zbl 1465.11090
[15] I. Gaál, K. Győry: Index form equations in quintic fields. Acta Arith. 89 (1999), 379-396. DOI 10.4064/aa-89-4-379-396 | MR 1703860 | Zbl 0930.11091
[16] I. Gaál, A. Pethő, M. Pohst: On the resolution of index form equations in quartic number fields. J. Symb. Comput. 16 (1993), 563-584. DOI 10.1006/jsco.1993.1064 | MR 1279534 | Zbl 0808.11023
[17] I. Gaál, N. Schulte: Computing all power integral bases of cubic fields. Math. Comput. 53 (1989), 689-696. DOI 10.2307/2008731 | MR 0979943 | Zbl 0677.10013
[18] J. Guàrdia, J. Montes, E. Nart: Newton polygons of higher order in algebraic number theory. Trans. Am. Math. Soc. 364 (2012), 361-416. DOI 10.1090/S0002-9947-2011-05442-5 | MR 2833586 | Zbl 1252.11091
[19] J. Guàrdia, J. Montes, E. Nart: Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields. J. Théor. Nombres Bordx. 23 (2021), 667-669. DOI 10.5802/jtnb.782 | MR 2861080 | Zbl 1266.11131
[20] K. Győry: Sur les polynômes á coefficients entiers et de discriminant donné. Acta Arith. 23 (1973), 419-426. (In French.) DOI 10.4064/aa-23-4-419-426 | MR 0437489 | Zbl 0269.12001
[21] K. Győry: Sur les polynômes á coefficients entiers et de discriminant donné. III. Publ. Math. Debr. 23 (1976), 141-165. (In French.) DOI 10.5486/PMD.1976.23.1-2.23 | MR 0437491 | Zbl 0354.10041
[22] K. Győry: On polynomials with integer coefficients and given discriminant. IV. Publ. Math. Debr. 25 (1978), 155-167. DOI 10.5486/PMD.1978.25.1-2.20 | MR 0485774 | Zbl 0405.12003
[23] K. Győry: Corps de nombres algébriques d'anneau d'entiers monogéne. Séminaire Delange-Pisot-Poitou, 20e année: 1978/1979. Théorie des nombres. Fascicule 2: Exposés 22 à 33, Index cumulatif 1re à 20e années, 1959/1960 à 1978/1979. Secrétariat Mathématique, Paris (1980), Article ID 26, 7 pages. (In French.) MR 0582432 | Zbl 0433.12001
[24] K. Győry: On discriminants and indices of integers of an algebraic number field. J. Reine Angew. Math. 324 (1981), 114-126. DOI 10.1515/crll.1981.324.114 | MR 0614518 | Zbl 0446.12006
[25] K. Győry: Bounds for the solutions of decomposable form equations. Publ. Math. Debr. 52 (1998), 1-31. DOI 10.5486/PMD.1998.1618 | MR 1603299 | Zbl 0902.11015
[26] A. Jakhar, S. K. Khanduja, N. Sangwan: Characterization of primes dividing the index of a trinomial. Int. J. Number Theory 13 (2017), 2505-2514. DOI 10.1142/S1793042117501391 | MR 3713088 | Zbl 1431.11116
[27] L. Jones, D. White: Monogenic trinomials with non-squarefree discriminant. Int. J. Math. 32 (2021), Article ID 2150089, 21 pages. DOI 10.1142/S0129167X21500890 | MR 4361991 | Zbl 1478.11125
[28] P. Llorente, E. Nart: Effective determination of the decomposition of the rational primes in a cubic field. Proc. Am. Math. Soc. 87 (1983), 579-585. DOI 10.1090/S0002-9939-1983-0687621-6 | MR 0687621 | Zbl 0514.12003
[29] J. Montes, E. Nart: On a theorem of Ore. J. Algebra 146 (1992), 318-334. DOI 10.1016/0021-8693(92)90071-S | MR 1152908 | Zbl 0762.11045
[30] W. Narkiewicz: Elementary and Analytic Theory of Algebraic Numbers. Springer Monographs in Mathematics. Springer, Berlin (2004). DOI 10.1007/978-3-662-07001-7 | MR 2078267 | Zbl 1159.11039
[31] E. Nart: On the index of a number field. Trans. Am. Math. Soc. 289 (1985), 171-183. DOI 10.1090/S0002-9947-1985-0779058-2 | MR 0779058 | Zbl 0563.12006
[32] Ö. Ore: Newtonsche Polygone in der Theorie der algebraischen Körper. Math. Ann. 99 (1928), 84-117. (In German.) DOI 10.1007/BF01459087 | MR 1512440 | JFM 54.0191.02
[33] A. Pethő, M. E. Pohst: On the indices of multiquadratic number fields. Acta Arith. 153 (2012), 393-414. DOI 10.4064/aa153-4-4 | MR 2925379 | Zbl 1255.11052
[34] A. Pethő, V. Ziegler: On biquadratic fields that admit unit power integral basis. Acta Math. Hung. 133 (2011), 221-241. DOI 10.1007/s10474-011-0103-5 | MR 2846093 | Zbl 1265.11097
[35] E. von Żyliński: Zur Theorie der ausserwesentlichen Diskriminantenteiler algebraischer Körper. Math. Ann. 73 (1913), 273-274. (In German.) DOI 10.1007/BF01456716 | MR 1511731 | JFM 44.0241.02

Affiliations:   Hamid Ben Yakkou, Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, P. O. Box 1874, 30050 Fez, Morocco, e-mail: beyakouhamid@gmail.com


 
PDF available at: