Dynamic behavior of vector solutions of a class of 2-D neutral differential systems
Arun Kumar Tripathy, Shibanee Sahu
Received October 19, 2023. Published online July 18, 2024.
Abstract: This work deals with the analysis pertaining some dynamic behavior of vector solutions of first order two-dimensional neutral delay differential systems of the form $\frac{{\rm d}}{{\rm d}t} \begin{bmatrix} u(t)+pu(t-\tau)\\
v(t)+pv(t-\tau)\end{bmatrix} = \begin{bmatrix} a & b \\
c & d
\end{bmatrix} \begin{bmatrix} u(t-\alpha)\\
v(t-\beta)
\end{bmatrix}.$
The effort has been made to study $\frac{{\rm d}}{{\rm d}t} \begin{bmatrix} x(t)-p(t)h_1(x(t-\tau))\\
y(t)-p(t)h_2(y(t-\tau)) \end{bmatrix} + \begin{bmatrix} a(t) & b(t)\\
c(t) & d(t) \end{bmatrix} \begin{bmatrix} f_1(x(t-\alpha))\\
f_2(y(t-\beta)) \end{bmatrix} =0,$
where $p,a,b,c,d,h_1,h_2,f_1,f_2 \in C(\mathbb{R},\mathbb{R})$; $\alpha,\beta,\tau\in\mathbb{R}^+$. We verify our results with the examples.
Keywords: oscillation; nonoscillation; nonlinear system of neutral differential equations; asymptotically stable; Banach's fixed point theorem
References: [1] L. H. Erbe, Q. Kong, B. G. Zhang: Oscillation Theory for Functional Differential Equations. Pure and Applied Mathematics, Marcel Dekker 190. Marcel Dekker, New York (1995). DOI 10.1201/9780203744727 | MR 1309905 | Zbl 0821.34067
[2] G. A. Grigorian: Oscillatory criteria for the systems of two first-order linear differential equations. Rocky Mt. J. Math. 47 (2017), 1497-1524. DOI 10.1216/RMJ-2017-47-5-1497 | MR 3705762 | Zbl 1378.34052
[3] I. Györi, G. Ladas: Oscillation Theory of Delay Differential Equations: With Applications. Oxford Mathematical Monographs. Clarendon Press, Oxford (1991). DOI 10.1093/oso/9780198535829.001.0001 | MR 1168471 | Zbl 0780.34048
[4] B. Mihalíková: Asymptotic behaviour of solutions of two-dimensional neutral differential systems. Czech. Math. J. 53 (2003), 735-741. DOI 10.1023/B:CMAJ.0000024515.64004.7c | MR 2000065 | Zbl 1080.34555
[5] M. Naito: Oscillation and nonoscillation for two-dimensional nonlinear systems of ordinary differential equations. Taiwanese J. Math. 27 (2023), 291-319. DOI 10.11650/tjm/221001 | MR 4563521 | Zbl 1521.34032
[6] Z. Opluštil: Oscillation criteria for two-dimensional system of non-linear ordinary differential equations. Electron. J. Qual. Theory Differ. Equ. 2016 (2016), Article ID 52, 17 pages. DOI 10.14232/ejqtde.2016.1.52 | MR 3533262 | Zbl 1363.34098
Affiliations: Arun Kumar Tripathy (corresponding author), Shibanee Sahu, Department of Mathematics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha 768019, India, e-mail: arun_tripathy70@rediffmail.com, shibaneesahu100@gmail.com