Received December 11, 2023. Published online June 10, 2024.
Abstract: The class of Sakaguchi type functions defined by balancing polynomials has been introduced as a novel subclass of bi-univalent functions. The bounds for the Fekete-Szegö inequality and the initial coefficients $\vert a_2\vert$ and $\vert a_3\vert$ have also been estimated.
Keywords: analytic function; bi-univalent function; Sakaguchi type function; balancing polynomial
References: [1] İ. Aktaş, İ. Karaman: On some new subclasses of bi-univalent functions defined by balancing polynomials. KMU J. Eng. Natur. Sci. 5 (2023), 25-32. DOI 10.55213/kmujens.1252471
[2] I. Aldawish, T. Al-Hawary, B. A. Frasin: Subclasses of bi-univalent functions defined by Frasin differential operator. Mathematics 8 (2020), Article ID 783, 11 pages. DOI 10.3390/math8050783
[3] A. Amourah, T. Al-Hawary, B. A. Frasin: Application of Chebyshev polynomials to certain class of bi-Bazilevič functions of order $\alpha +i\beta$. Afr. Mat. 32 (2021), 1059-1066. DOI 10.1007/s13370-021-00881-x | MR 4293839 | Zbl 1488.30030
[4] A. Behera, G. K. Panda: On the square roots of triangular numbers. Fibonacci Q. 37 (1999), 98-105. MR 1690458 | Zbl 0962.11014
[5] D. A. Brannan, J. G. Clunie (eds.): Aspects of Contemporary Complex Analysis. Academic Press, London (1980). MR 0623462 | Zbl 0483.00007
[6] D. A. Brannan, J. Clunie, W. E. Kirwan: Coefficient estimates for a class of star-like functions. Can. J. Math. 22 (1970), 476-485. DOI 10.4153/CJM-1970-055-8 | MR 0260994 | Zbl 0197.35602
[7] R. K. Davala, G. K. Panda: On sum and ratio formulas for balancing numbers. J. Indian Math. Soc., New Ser. 82 (2015), 23-32. MR 3290017 | Zbl 1371.11038
[8] B. A. Frasin: Coefficient inequalities for certain classes of Sakaguchi type functions. Int. J. Nonlinear Sci. 10 (2010), 206-211. MR 2745244 | Zbl 1216.30008
[9] R. Frontczak: A note on hybrid convolutions involving balancing and Lucas-balancing numbers. Appl. Math. Sci. 12 (2018), 1201-1208. DOI 10.12988/ams.2018.87111
[10] R. Frontczak: Sums of balancing and Lucas-balancing numbers with binomial coefficients. Int. J. Math. Anal. 12 (2018), 585-594. DOI 10.12988/ijma.2018.81067
[11] R. Frontczak: On balancing polynomials. Appl. Math. Sci. 13 (2019), 57-66. DOI 10.12988/ams.2019.812183
[12] R. Keskin, O. Karaatli: Some new properties of balancing numbers and square triangular numbers. J. Integer Seq. 15 (2012), Articl ID 12.1.4, 13 pages. MR 2872461 | Zbl 1291.11030
[13] T. Komatsu, G. K. Panda: On several kinds of sums of balancing numbers. Ars Comb. 153 (2020), 127-147. MR 4253120 | Zbl 1513.11047
[14] M. Lewin: On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 18 (1967), 63-68. DOI 10.1090/S0002-9939-1967-0206255-1 | MR 0206255 | Zbl 0158.07802
[15] E. Netanyahu: The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $\vert z\vert<1$. Arch. Ration. Mech. Anal. 32 (1969), 100-112. DOI 10.1007/BF00247676 | MR 0235110 | Zbl 0186.39703
[16] S. Owa, T. Sekine, R. Yamakawa: Notes on Sakaguchi functions. Aust. J. Math. Anal. Appl. 3 (2006), Article ID 12, 7 pages. MR 2223016 | Zbl 1090.30024
[17] S. Owa, T. Sekine, R. Yamakawa: On Sakaguchi type functions. Appl. Math. Comput. 187 (2007), 356-361. DOI 10.1016/j.amc.2006.08.133 | MR 2323589 | Zbl 1113.30018
[18] B. K. Patel, N. Irmak, P. K. Ray: Incomplete balancing and Lucas-balancing numbers. Math. Rep., Buchar. 20 (2018), 59-72. MR 3781687 | Zbl 1399.11045
[19] P. K. Ray: Some congruences for balancing and Lucas-balancing numbers and their applications. Integers 14 (2014), Article ID A08, 8 pages. MR 3239589 | Zbl 1284.11031
[20] P. K. Ray: Balancing and Lucas-balancing sums by matrix methods. Math. Rep., Buchar. 17 (2015), 225-233. MR 3375730 | Zbl 1374.11024
[21] P. K. Ray: On the properties of $k$-balancing numbers. Ain Shams Engin. J. 9 (2018), 395-402. DOI 10.1016/j.asej.2016.01.014
[22] K. Sakaguchi: On a certain univalent mapping. J. Math. Soc. Japan 11 (1959), 72-75. DOI 10.2969/jmsj/01110072 | MR 0107005 | Zbl 0085.29602
[23] T. G. Shaba: Subclass of bi-univalent functions satisfying subordinate conditions defined by Frasin differential operator. Turkish J. Ineq. 4 (2020), 50-58.
[24] H. M. Srivastava, A. K. Mishra, P. Gochhayat: Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 23 (2010), 1188-1192. DOI 10.1016/j.aml.2010.05.009 | MR 2665593 | Zbl 1201.30020
[25] S. P. Vijayalakshmi, S. Bulut, T. V. Sudharsan: Vandermonde determinant for a certain Sakaguchi type function in Limaçon domain. Asian-Eur. J. Math. 15 (2022), Article ID 2250212, 9 pages. DOI 10.1142/S1793557122502126 | MR 4504278 | Zbl 1504.30016
[26] Q.-H. Xu, Y.-C. Gui, H. M. Srivastava: Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Appl. Math. Lett. 25 (2012), 990-994. DOI 10.1016/j.aml.2011.11.013 | MR 2902367 | Zbl 1244.30033
[27] Q.-H. Xu, H.-G. Xiao, H. M. Srivastava: A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Appl. Math. Comput. 218 (2012), 11461-11465. DOI 10.1016/j.amc.2012.05.034 | MR 2943990 | Zbl 1284.30009
[28] F. Yousef, A. Amourah, B. A. Frasin, T. Bulboacă: An avant-garde construction for subclasses of analytic bi-univalent functions. Axioms 11 (2022), Article ID 267, 8 pages. DOI 10.3390/axioms11060267
Affiliations: Gunasekar Saravanan, Department of Mathematics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Chennai, 601103, Tamil Nadu, India, e-mail: gsaran825@yahoo.com; Sudharsanan Baskaran, Balasubramaniam Vanithakumari, Department of Mathematics, Agurchand Manmull Jain College, Meenambakkam, Chennai 600061, Tamil Nadu, India, e-mail: sbas9991@gmail.com, Vanithagft@gmail.com; Serap Bulut (corresponding author), Kocaeli University, Faculty of Aviation and Space Sciences, Arslanbey Campus, 41285 Kartepe-Kocaeli, Turkey, e-mail: serap.bulut@kocaeli.edu.tr