Mathematica Bohemica, first online, pp. 1-27


On solutions of a certain nonlinear differential-difference functional equation

Rajib Mandal, Raju Biswas

Received December 30, 2023.   Published online November 8, 2024.

Abstract:  We investigate all the possible finite order entire solutions of the Fermat-type differential-difference functional equation $(Af(z))^2+R^2(z)(Bf^{(m)}(z+c)+Cf^{(n)}(z))^2=Q(z)$, where $m,n\in\mathbb{N}$, $A,B,C\in\mathbb{C}\setminus\{0\}$ and $R(z)$, $Q(z)$ are nonzero polynomials. The results significantly improve some earlier findings, especially the results due to A. Banerjee and T. Biswas (2021). We also show that the equation does not have any non-entire meromorphic solution. We provide some examples to support the results.
Keywords:  functional equation; differential-difference equation; Fermat-type equation; Nevanlinna theory
Classification MSC:  39B32, 34M05, 30D35

PDF available at:  Institute of Mathematics CAS

References:
[1] I. N. Baker: On a class of meromorphic functions. Proc. Am. Math. Soc. 17 (1966), 819-822. DOI 10.1090/S0002-9939-1966-0197732-X | MR 0197732 | Zbl 0161.35203
[2] A. Banerjee, T. Biswas: On the transcendental solutions of Fermat type delay-differential and $c$-shift equations with some analogous results. Sib. Èlektron. Mat. Izv. 18 (2021), 479-494. DOI 10.33048/semi.2021.18.034 | MR 4278805 | Zbl 1474.34546
[3] M. F. Chen, Z. S. Gao: Entire solutions of differential-difference equation and Fermat type $q$-difference differential equations. Commun. Korean Math. Soc. 30 (2015), 447-456. DOI 10.4134/CKMS.2015.30.4.447 | MR 3423727 | Zbl 1332.34139
[4] V. Ganapathy Iyer: On certain functional equations. J. Indian Math. Soc., New Ser. 3 (1939), 312-315. MR 0001111 | Zbl 0022.21401
[5] F. Gross: On the equation $f^n+g^n=1$. Bull. Am. Math. Soc. 72 (1966), 86-88. DOI 10.1090/S0002-9904-1966-11429-5 | MR 0185125 | Zbl 0131.13603
[6] F. Gross: On the functional equation $f^n+g^n =h^n$. Am. Math. Mon. 73 (1966), 1093-1096. DOI 10.2307/2314644 | MR 0204655 | Zbl 0154.40104
[7] W. K. Hayman: Meromorphic Functions. Oxford Mathematical Monographs. Clarendon Press, Oxford (1964). MR 0164038 | Zbl 0115.06203
[8] J. Heittokangas, R. Korhonen, I. Laine: On meromorphic solutions of certain nonlinear differential equations. Bull. Aust. Math. Soc. 66 (2002), 331-343. DOI 10.1017/S000497270004017X | MR 1932356 | Zbl 1047.34101
[9] I. Laine: Nevanlinna Theory and Complex Differential Equations. de Gruyter Studies in Mathematics 15. Walter de Gruyter, Berlin (1993). DOI 10.1515/9783110863147 | MR 1207139 | Zbl 0784.30002
[10] B. Q. Li: On certain non-linear differential equations in complex domains. Arch. Math. 91 (2008), 344-353. DOI 10.1007/s00013-008-2648-2 | MR 2447549 | Zbl 1163.34059
[11] P. Li, C.-C. Yang: On the nonexistence of entire solutions of certain type of nonlinear differential equations. J. Math. Anal. Appl. 320 (2006), 827-835. DOI 10.1016/j.jmaa.2005.07.066 | MR 2225998 | Zbl 1100.34066
[12] K. Liu: Meromorphic functions sharing a set with applications to difference equations. J. Math. Anal. Appl. 359 (2009), 384-393. DOI 10.1016/j.jmaa.2009.05.061 | MR 2542182 | Zbl 1177.30035
[13] K. Liu, T.-B. Cao: Entire solutions of Fermat type $q$-difference differential equations. Electron. J. Differ. Equ. 2013 (2013), Article ID 59, 10 pages. MR 3035258 | Zbl 1287.39006
[14] K. Liu, T. Cao, H. Cao: Entire solutions of Fermat type differential-difference equations. Arch. Math. 99 (2012), 147-155. DOI 10.1007/s00013-012-0408-9 | MR 2958330 | Zbl 1270.34170
[15] K. Liu, X. Dong: Fermat type differential and difference equations. Electron. J. Differ. Equ. 2015 (2015), Article ID 159, 10 pages. MR 3358531 | Zbl 1321.39023
[16] K. Liu, L. Yang: On entire solutions of some differential-difference equations. Comput. Methods Funct. Theory 13 (2013), 433-447. DOI 10.1007/s40315-013-0030-2 | MR 3102646 | Zbl 1314.39022
[17] K. Liu, L. Yang: A note on meromorphic solutions of Fermat types equations. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 62 (2016), 317-325. MR 3680209 | Zbl 1389.39038
[18] K. Liu, L. Yang, X. Liu: Existence of entire solutions of nonlinear difference equations. Czech. Math. J. 61 (2011), 565-576. DOI 10.1007/s10587-011-0075-1 | MR 2905424 | Zbl 1249.30102
[19] R. Mandal, R. Biswas: On the transcendental entire functions satisfying some Fermat-type differential-difference equations. Indian J. Math. 65 (2023), 153-183. MR 4652412 | Zbl 7782949
[20] P. Montel: Leçons sur les familles normales de fonctions analytiques et leurs applications. Gauthier-Villars, Paris (1927). (In French.) JFM 53.0303.02
[21] J. Tang, L. Liao: The transcendental meromorphic solutions of a certain type of nonlinear differential equations. J. Math. Anal. Appl. 334 (2007), 517-527. DOI 10.1016/j.jmaa.2006.12.075 | MR 2332572 | Zbl 1127.34051
[22] H. Wang, H. Y. Xu, J. Tu: The existence and forms of solutions for some Fermat-type differential-difference equations. AIMS Math. 5 (2020), 685-700. DOI 10.3934/math.2020046 | MR 4140495 | Zbl 1484.30040
[23] C.-C. Yang: A generalization of a theorem of P. Montel on entire functions. Proc. Am. Math. Soc. 26 (1970), 332-334. DOI 10.1090/S0002-9939-1970-0264080-X | MR 0264080 | Zbl 0202.36001
[24] C.-C. Yang: On entire solutions of a certain type of nonlinear differential equation. Bull. Aust. Math. Soc. 64 (2001), 377-380. DOI 10.1017/S0004972700019845 | MR 1878889 | Zbl 0991.30019
[25] C.-C. Yang, I. Laine: On analogies between nonlinear difference and differential equations. Proc. Japan Acad., Ser. A 86 (2010), 10-14. DOI 10.3792/pjaa.86.10 | MR 2598818 | Zbl 1207.34118
[26] C.-C. Yang, P. Li: On the transcendental solutions of a certain type of nonlinear differential equations. Arch. Math. 82 (2004), 442-448. DOI 10.1007/s00013-003-4796-8 | MR 2061450 | Zbl 1052.34083
[27] C.-C. Yang, H. X. Yi: Uniqueness Theory of Meromorphic Functions. Mathematics and its Applications 557. Kluwer Academic, Dordrecht (2003). DOI 10.1007/978-94-017-3626-8 | MR 2105668 | Zbl 1070.30011
[28] X. Zhang, L. W. Liao: On a certain type of nonlinear differential equations admitting transcendental meromorphic solutions. Sci. China, Math. 56 (2013), 2025-2034. DOI 10.1007/s11425-013-4594-0 | MR 3102624 | Zbl 1287.34077

Affiliations:   Rajib Mandal, Raju Biswas (correspoding author), Department of Mathematics, Raiganj University, Raiganj, West Bengal-733134, India, e-mail: rajibmathresearch@gmail.com, rajubiswasjanu02@gmail.com


 
PDF available at: