Some conditions for the Touchard polynomials to be in subclasses of analytic functions
Wafaa Y. Kota, Rabha M. El-Ashwah
Received January 5, 2025. Published online September 1, 2025.
Abstract: This paper discusses certain criteria that must be satisfied for a Touchard polynomial to belong to subclasses of analytic functions. Also, we obtain some inclusion relations between the classes $\mathfrak{U}_{\sigma}(D,E)$ and $\widehat{\mathcal{M}}(\eta,\mu)$. We also go over the geometric characteristics of an integral operator that has to do with the Touchard polynomial. Some particular instances of our primary discoveries are also remarked upon and discussed.
Keywords: Touchard polynomial; analytic function; integral operator; Hadamard product; univalent function
References: [1] E. E. Ali, W. Y. Kota, R. M. El-Ashwah, A. M. Albalahi, F. E. Mansour, R. A. Tahira: An application of Touchard polynomials on subclasses of analytic functions. Symmetry 15 (2023), Article ID 2125, 14 pages. DOI 10.3390/sym15122125
[2] K. Al-Shaqsi: On inclusion results of certain subclasses of analytic functions associated with generating function. AIP Conf. Proc. 1830 (2017), Article ID 070030. DOI 10.1063/1.4980979
[3] A. O. Badghaish, A. Z. Bajamal: Applications of the Gaussian hypergeometric function to some subclasses of analytic functions. Korean J. Math. 32 (2024), 173-182. DOI 10.11568/kjm.2024.32.1.173 | MR 4736062 | Zbl 1541.30006
[4] Á. Baricz: Generalized Bessel Functions of the First Kind. Lecture Notes in Mathematics 1994. Springer, Berlin (2010). DOI 10.1007/978-3-642-12230-9 | MR 2656410 | Zbl 1203.33001
[5] K. N. Boyadzhiev: Exponential polynomials, Stirling numbers, and evaluation of some gamma integrals. Abstr. Appl. Anal. 2009 (2009), Article ID 168672, 18 pages. DOI 10.1155/2009/168672 | MR 2545183 | Zbl 1237.11011
[6] V. B. L. Chaurasia, H. S. Parihar: Certain sufficiency conditions on Fox-Wright functions. Demonstr. Math. 41 (2008), 813-822. DOI 10.1515/dema-2008-0409 | MR 2484506 | Zbl 1160.30312
[7] P. N. Chichra: New subclasses of the class of close-to-convex functions. Proc. Am. Math. Soc. 62 (1977), 37-43. DOI 10.1090/S0002-9939-1977-0425097-1 | MR 0425097 | Zbl 0355.30013
[8] S. Ding, Y. Ling, G. Bao: Some properties of a class of analytic functions. J. Math. Anal. Appl. 195 (1995), 71-81. DOI 10.1006/jmaa.1995.1342 | MR 1352810 | Zbl 0843.30022
[9] K. K. Dixit, S. K. Pal: On a class of univalent functions related to complex order. Indian J. Pure Appl. Math. 26 (1995), 889-896. MR 1347537 | Zbl 0835.30006
[10] R. M. El-Ashwah: Subclasses of bi-univalent functions defined by convolution. J. Egypt. Math. Soc. 22 (2014), 348-351. DOI 10.1016/j.joems.2013.06.017 | MR 3260774 | Zbl 1300.30022
[11] R. M. El-Ashwah, W. Y. Kota: Some condition on a Poisson distribution series to be in subclasses of univalent functions. Acta Univ. Apulensis, Math. Inform. 51 (2017), 89-103. DOI 10.17114/j.aua.2017.51.08 | MR 3711116 | Zbl 1413.30053
[12] R. M. El-Ashwah, W. Y. Kota: Some application of a Poisson distribution series on subclasses of univalent functions. J. Fract. Calc. Appl. 9 (2018), 167-179. MR 3695825 | Zbl 1488.30062
[13] B. A. Frasin: Poisson distribution series on a general class of analytic functions. Acta Comment. Univ. Tartu. Math. 24 (2020), 241-251. DOI 10.12697/ACUTM.2020.24.16 | MR 4204954 | Zbl 1460.30008
[14] A. Gangadharan, T. N. Shanmugam, H. M. Srivastava: Generalized hypergeometric functions associated with $k$-uniformly convex functions. Comput. Math. Appl. 44 (2002), 1515-1526. DOI 10.1016/S0898-1221(02)00275-4 | MR 1944665 | Zbl 1036.33003
[15] W. Y. Kota, R. M. El-Ashwah: Sufficient and necessary conditions for the generalized distribution series to be in subclasses of univalent functions. Ukr. Math. J. 75 (2024), 1549-1560. DOI 10.1007/s11253-024-02277-z | MR 4747108 | Zbl 1543.30044
[16] A. Y. Lashin: On a certain subclass of starlike functions with negative coefficients. JIPAM, J. Inequal. Pure Appl. Math. 10 (2009), Article ID 40, 8 pages. MR 2511933 | Zbl 1165.30323
[17] A. Y. Lashin, A. O. Badghaish, A. Z. Bajamal: Certain subclasses of univalent functions involving Pascal distribution series. Bol. Soc. Mat. Mex., III. Ser. 28 (2022), Article ID 12, 11 pages. DOI 10.1007/s40590-021-00403-6 | MR 4358687 | Zbl 1483.30039
[18] A. Y. Lashin, A. O. Badghaish, A. Z. Bajamal: The sufficient and necessary conditions for the Poisson distribution series to be in some subclasses of analytic functions. J. Funct. Spaces 2022 (2022), Article ID 2419196, 6 pages. DOI 10.1155/2022/2419196 | MR 4421455 | Zbl 1493.30031
[19] R. J. Libera: Some radius of convexity problems. Duke Math. J. 31 (1964), 143-158. DOI 10.1215/S0012-7094-64-03114-X | MR 0160890 | Zbl 0129.29403
[20] S.-D. Lin, H. M. Srivastava, J.-C. Yao: Some classes of generating relations associated with a family of the generalized Gauss type hypergeometric functions. Appl. Math. Inf. Sci. 9 (2015), 1737-1738. MR 3339894
[21] G. Murugusundraramoorthy, S. Porwal: Univalent functions with positive coefficients involving Touchard polynomials. Al-Qadisiyah J. Pure Sci. 25 (2020), Article ID 1, 9 pages. DOI 10.29350/qjps.2020.25.4.1176
[22] M. Obradović, S. B. Joshi: On certain classes of strongly starlike functions. Taiwanese J. Math. 2 (1998), 297-302. DOI 10.11650/twjm/1500406969 | MR 1641159 | Zbl 0917.30012
[23] H. Orhan: On a subclass of analytic functions with negative coefficients. Appl. Math. Comput. 142 (2003), 243-253. DOI 10.1016/S0096-3003(02)00299-0 | MR 1979432 | Zbl 1024.30008
[24] K. S. Padmanabhan: On a certain class of functions whose derivatives have a positive real part in the unit disc. Ann. Pol. Math. 23 (1970), 73-81. DOI 10.4064/ap-23-1-73-81 | MR 0264051 | Zbl 0198.11101
[25] S. Ponnusamy, F. Rønning: Starlikeness properties for convolutions involving hypergeometric series. Ann. Univ. Mariae Curie-Skł odowska, Sect. A 52 (1998), 141-155. MR 1665537 | Zbl 1008.30004
[26] S. Porwal: An application of a Poisson distribution series on certain analytic functions. J. Complex Anal. 2014 (2014), Article ID 984135, 3 pages. DOI 10.1155/2014/984135 | MR 3173344 | Zbl 1310.30017
[27] S. Porwal: Generalized distribution and its geometric properties associated with univalent functions. J. Complex Anal. 2018 (2018), Article ID 8654506, 5 pages. DOI 10.1155/2018/8654506 | MR 3816114 | Zbl 1409.60032
[28] S. Porwal, M. Ahmad: Some sufficient condition for generalized Bessel functions associated with conic regions. Vietnam J. Math. 43 (2015), 163-172. DOI 10.1007/s10013-014-0089-8 | MR 3319883 | Zbl 1318.30033
[29] S. Porwal, D. Bajpai: An application of Mittag-Leffler type Poisson distribution series on starlike and convex functions. Asia Pac. J. Math. 2020 (2020), Article ID 7, 6 pages. DOI 10.28924/APJM/7-1
[30] S. Porwal, G. Murugusundaramoorthy: Unified classes of starlike and convex functions associated with Touchard polynomials. Sci. Tech. Asia 27 (2022), 207-214. DOI 10.14456/scitechasia.2022.80
[31] R. K. Raina: On univalent and starlike Wright's hypergeometric functions. Rend. Semin. Mat. Univ. Padova 95 (1996), 112. MR 1405351 | Zbl 0863.30018
[32] M. I. S. Robertson: On the theory of univalent functions. Ann. Math. (2) 37 (1936), 374-408. DOI 10.2307/1968451 | MR 1503286 | Zbl 0014.16505
[33] A. Swaminathan: Certain sufficiency conditions on Gaussian hypergeometric functions. JIPAM, J. Inequal. Pure Appl. Math. 5 (2004), Article ID 83, 10 pages. MR 2112436 | Zbl 1126.30010
[34] J. Touchard: Sur les cycles des substitutions. Acta Math. 70 (1939), 243-297. (In French.) DOI 10.1007/BF02547349 | MR 1555449 | Zbl 0021.01104
Affiliations: Wafaa Y. Kota (corresponding author), Rabha M. El-Ashwah, Department of Mathematics, Faculty of Science, Damietta University, 34511 New Damietta, Egypt, e-mail: wafaa_kota@yahoo.com, r_elashwah@yahoo.com