Mathematica Bohemica, first online, pp. 1-10


A regularity criterion of 3D magneto-micropolar equations with the pressure term

Jae-Myoung Kim

Received January 24, 2024.   Published online January 28, 2025.

Abstract:  This work focuses on the 3D incompressible magneto-micropolar (MMP) equations with the mixed pressure-velocity-magnetic field in view of Lorentz spaces. Also, we generalize some known results to MMP equations in view of Besov spaces.
Keywords:  3D magneto-micropolar equation; regularity criterion; pressure function; Besov space
Classification MSC:  35Q35, 35B65, 76D05

PDF available at:  Institute of Mathematics CAS

References:
[1] G. Ahmadi, M. Shahinpoor: Universal stability of magneto-micropolar fluid motions. Int. J. Engin. Sci. 12 (1974), 657-663. DOI 10.1016/0020-7225(74)90042-1 | MR 0443550 | Zbl 0284.76009
[2] H. Beirão da Veiga, J. Yang: On mixed pressure-velocity regularity criteria to the Navier-Stokes equations in Lorentz spaces. Chin. Ann. Math., Ser. B 42 (2021), 1-16. DOI 10.1007/s11401-021-0242-0 | MR 4209050 | Zbl 1464.35169
[3] J. Bergh, J. Löfström: Interpolation Spaces: An Introduction. Grundlehren der mathematischen Wissenschaften 223. Springer, Berlin (1976). DOI 10.1007/978-3-642-66451-9 | MR 0482275 | Zbl 0344.46071
[4] L. C. Berselli, G. P. Galdi: Regularity criteria involving the pressure for the weak solutions of the Navier-Stokes equations. Proc. Am. Math. Soc. 130 (2002), 3585-3595. DOI 10.1090/S0002-9939-02-06697-2 | MR 1920038 | Zbl 1075.35031
[5] B.-Q. Dong, Y. Jia, Z.-M. Chen: Pressure regularity criteria of the three-dimensional micropolar fluid flows. Math. Methods Appl. Sci. 34 (2011), 595-606. DOI 10.1002/mma.1383 | MR 2814514 | Zbl 1219.35189
[6] A. C. Eringen: Theory of micropolar fluids. J. Math. Mech. 16 (1967), 1-18. DOI 10.1512/iumj.1967.16.16001 | MR 0204005
[7] S. Gala: A remark on the logarithmically improved regularity criterion for the micropolar fluid equations in terms of the pressure. Math. Methods Appl. Sci. 34 (2011), 1945-1953. DOI 10.1002/mma.1488 | MR 2846510 | Zbl 1230.35100
[8] S. Gala, M. A. Ragusa: Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices. Appl. Anal. 95 (2016), 1271-1279. DOI 10.1080/00036811.2015.1061122 | MR 3479003 | Zbl 1336.35289
[9] S. Gala, M. A. Ragusa, Z. Zhang: A regularity criterion in terms of pressure for the 3D viscous MHD equations. Bull. Malays. Math. Sci. Soc. (2) 40 (2017), 1677-1690. DOI 10.1007/s40840-015-0160-y | MR 3712578 | Zbl 1386.35339
[10] Y. Giga: Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system. J. Differ. Equations 62 (1986), 186-212. DOI 10.1016/0022-0396(86)90096-3 | MR 0833416 | Zbl 0577.35058
[11] Z. Guo, P. Kučera, Z. Skalák: Regularity criterion for solutions to the Navier-Stokes equations in the whole 3D space based on two vorticity components. J. Math. Anal. Appl. 458 (2018), 755-766. DOI 10.1016/j.jmaa.2017.09.029 | MR 3711930 | Zbl 1378.35217
[12] X. Ji, Y. Wang, W. Wei: New regularity criteria based on pressure or gradient of velocity in Lorentz spaces for the 3D Navier-Stokes equations. J. Math. Fluid Mech. 22 (2020), Article ID 13, 8 pages. DOI 10.1007/s00021-019-0476-8 | MR 4067153 | Zbl 1433.76033
[13] R. Kanamaru, T. Yamamoto: Logarithmically improved extension criteria involving the pressure for the Navier-Stokes equations in $\Bbb R^n$. Math. Nachr. 296 (2023), 2859-2876. DOI 10.1002/mana.202100281 | MR 4626863 | Zbl 1532.35346
[14] J.-M. Kim: Regularity criteria of 3D generalized magneto-micropolar fluid system in terms of the pressure. Available at https://arxiv.org/abs/2310.00217 (2023), 13 pages. DOI 10.48550/arXiv.2310.00217
[15] J.-M. Kim, J. Kim: On mixed pressure-velocity regularity criteria for the 3D micropolar equations in Lorentz spaces. J. Chungcheong Math. Soc. 34 (2021), 85-92. DOI 10.14403/jcms.2021.34.1.85 | MR 4229875
[16] Z. Li, P. Niu: New regularity criteria for the 3D magneto-micropolar fluid equations in Lorentz spaces. Math. Methods Appl. Sci. 44 (2021), 6056-6066. DOI 10.1002/mma.7170 | MR 4251020 | Zbl 1473.35448
[17] Y. Meyer, P. Gérard, F. Oru: Inégalités de Sobolev précisées. Sémin. Équ. Dériv. Partielles, Éc. Polytech., Cent. Math., Palaiseau 4 (1996-1997), 8 pages. (In French.) MR 1482810 | Zbl 1066.46501
[18] R. O'Neil: Convolution operators and $L(p,q)$ spaces. Duke Math. J. 30 (1963), 129-142. DOI 10.1215/S0012-7094-63-03015-1 | MR 0146673 | Zbl 0178.47701
[19] E. E. Ortega-Torres, M. A. Rojas-Medar: Magneto-micropolar fluid motion: Global existence of strong solutions. Abstr. Appl. Anal. 4 (1999), 109-125. DOI 10.1155/S1085337599000287 | MR 1810322 | Zbl 0976.35055
[20] M. A. Ragusa, F. Wu: Eigenvalue regularity criteria of the three-dimensional micropolar fluid equations. Bull. Malays. Math. Sci. Soc. (2) 47 (2024), Article ID 76, 11 pages. DOI 10.1007/s40840-024-01679-3 | MR 4718588 | Zbl 1541.35390
[21] M. A. Rojas-Medar: Magneto-micropolar fluid motion: Existence and uniqueness of strong solution. Math. Nachr. 188 (1997), 301-319. DOI 10.1002/mana.19971880116 | MR 1484679 | Zbl 0893.76006
[22] Y. Sawano: Homogeneous Besov spaces. Kyoto J. Math. 60 (2020), 1-43. DOI 10.1215/21562261-2019-0038 | MR 4065179 | Zbl 1437.42034
[23] T. Suzuki: A remark on the regularity of weak solutions to the Navier-Stokes equations in terms of the pressure in Lorentz spaces. Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 3849-3853. DOI 10.1016/j.na.2012.02.006 | MR 2914575 | Zbl 1239.35115
[24] T. Suzuki: Regularity criteria of weak solutions in terms of the pressure in Lorentz spaces to the Navier-Stokes equations. J. Math. Fluid Mech. 14 (2012), 653-660. DOI 10.1007/s00021-012-0098-x | MR 2992034 | Zbl 1256.35066
[25] Y. Zhou: Regularity criteria for the 3D MHD equations in terms of the pressure. Int. J. Non-Linear Mech. 41 (2006), 1174-1180. DOI 10.1016/j.ijnonlinmec.2006.12.001 | MR 2308660 | Zbl 1160.35506

Affiliations:   Jae-Myoung Kim, Department of Mathematics Education, Andong National University, Andong 36729, Republic of Korea, e-mail: jmkim02@anu.ac.kr


 
PDF available at: