On repdigits as product of $k$-Fibonacci and $k$-Lucas numbers
Safia Seffah, Salah Eddine Rihane, Alain Togbé
Received March 25, 2024. Published online January 27, 2025.
Abstract: For an integer $k\geq2$, let $(F_n^{(k)})_{n\geq-(k-2)}$, $(L_n^{(k)})_{n \geq-(k-2)}$ be $k$-Fibonacci and $k$-Lucas sequences, respectively. For these sequences the first $k$ terms are $0,\ldots,0,1$ and $0,\ldots,0,2,1$, respectively, and each term afterwards is the sum of the preceding $k$ terms. In this paper, we determine all possibilities such that $F_n^{(k)} L_m^{(k)}$ can represent a repdigit.
Keywords: $k$-Fibonacci numbers; $k$-Lucas numbers; repdigits; linear form in logarithms; reduction method
References: [1] K. N. Adédji, A. Filipin, A. Togbé: Fibonacci and Lucas numbers as products of three repdigits in base $g$. Rend. Circ. Mat. Palermo (2) 72 (2023), 4003-4021. DOI 10.1007/s12215-023-00878-4 | MR 4670925 | Zbl 1532.11022
[2] A. Baker, H. Davenport: The equations $3x^2 - 2 = y^2$ and $8x^2 - 7 = z^2$. Q. J. Math., Oxf. II. Ser. 20 (1969), 129-137. DOI 10.1093/qmath/20.1.129 | MR 0248079 | Zbl 0177.06802
[3] D. Bednařík, E. Trojovská: Repdigits as product of Fibonacci and Tribonacci numbers. Mathematics 8 (2020), Article ID 1720, 8 pages. DOI 10.3390/math8101720
[4] K. Bhoi, P. Ray: Repdigits as difference of two Fibonacci or Lucas numbers. Mat. Stud. 56 (2021), 124-132. DOI 10.30970/ms.56.2.124-132 | MR 4358977 | Zbl 1495.11029
[5] J. J. Bravo, C. A. Gómez, F. Luca: Powers of two as sums of two $k$-Fibonacci numbers. Miskolc Math. Notes 17 (2016), 85-100. DOI 10.18514/MMN.2016.1505 | MR 3527869 | Zbl 1389.11041
[6] J. J. Bravo, C. A. Gómez, F. Luca: A Diophantine equation in $k$-Fibonacci numbers and repdigits. Colloq. Math. 152 (2018), 299-315. DOI 10.4064/cm7149-6-2017 | MR 3794331 | Zbl 1407.11026
[7] J. J. Bravo, F. Luca: On a conjecture about repdigits in $k$-generalized Fibonacci sequences. Publ. Math. Debr. 82 (2013), 623-639. DOI 10.5486/PMD.2013.5390 | MR 3066434 | Zbl 1274.11035
[8] J. J. Bravo, F. Luca: Repdigits in $k$-Lucas sequences. Proc. Indian Acad. Sci., Math. Sci. 124 (2014), 141-154. DOI 10.1007/s12044-014-0174-7 | MR 3218885 | Zbl 1382.11019
[9] J. J. Bravo, F. Luca: Repdigits as sums of two $k$-Fibonacci numbers. Monatsh Math. 176 (2015), 31-51. DOI 10.1007/s00605-014-0622-6 | MR 3296202 | Zbl 1390.11034
[10] Y. Bugeaud, M. Mignotte, S. Siksek: Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers. Ann. Math. (2) 163 (2006), 969-1018. DOI 10.4007/annals.2006.163.969 | MR 2215137 | Zbl 1113.11021
[11] P. Coufal, P. Trojovský: Repdigits as product of terms of $k$-Bonacci sequences. Mathematics 9 (2021), Article ID 682, 10 pages. DOI 10.3390/math9060682
[12] B. M. M. de Weger: Algorithms for Diophantine equations. CWI Tract, 65. Centrum voor Wiskunde en Informatica, Amsterdam (1989). MR 1026936 | Zbl 0687.10013
[13] G. P. B. Dresden, Z. Du: A simplified Binet formula for $k$-generalized Fibonacci numbers. J. Integer Seq. 17 (2014), Article 14.4.7, 9 pages. MR 3181762 | Zbl 1360.11031
[14] A. Dujella, A. Pethő: A generalization of a theorem of Baker and Davenport. Q. J. Math., Oxf. II. Ser. 49 (1998), 291-306. MR 1645552 | Zbl 0911.11018
[15] F. Erduvan, R. Keskin: Repdigits as products of two Fibonacci or Lucas numbers. Proc. Indian Acad. Sci., Math. Sci. 130 (2020), Article ID 28, 14 pages. DOI 10.1007/s12044-020-0554-0 | MR 4079185 | Zbl 1440.11016
[16] F. Luca: Fibonacci and Lucas numbers with only one distinct digit. Port. Math. 57 (2000), 243-254. MR 1759818 | Zbl 0958.11007
[17] D. Marques: On $k$-generalized Fibonacci numbers with only one distinct digit. Util. Math. 98 (2015), 23-31. MR 3410879 | Zbl 1369.11014
[18] E. M. Matveev: An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izv. Math. 64 (2000), 1217-1269. DOI 10.1070/im2000v064n06abeh000314 | MR 1817252 | Zbl 1013.11043
[19] D. Meguedmi, S. E. Rihane, A. Togbé: Generalization of a theorem of Adegbindin, Luca and Togbé. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116 (2022), Article ID 36, 13 pages. DOI 10.1007/s13398-021-01177-2 | MR 4336279 | Zbl 1480.11024
[20] E. P. Miles, Jr.: Generalized Fibonacci numbers and associated matrices. Am. Math. Mon. 67 (1960), 745-752. DOI 10.1080/00029890.1960.11989593 | MR 0123521 | Zbl 0103.27203
[21] M. D. Miller: On generalized Fibonacci numbers. Am. Math. Mon. 78 (1971), 1108-1109. DOI 10.1080/00029890.1971.11992952 | MR 1536552 | Zbl 0236.30004
[22] S. E. Rihane: $k$-Fibonacci and $k$-Lucas numbers as product of two repdigits. Result. Math. 76 (2021), Article ID 208, 20 pages. DOI 10.1007/s00025-021-01526-y | MR 4320850 | Zbl 1495.11035
[23] S. E. Rihane, A. Togbé: On the intersection of $k$-Lucas sequences and some binary sequences. Period. Math. Hung. 84 (2022), 125-145. DOI 10.1007/s10998-021-00387-w | MR 4381755 | Zbl 1499.11077
[24] Z. Şiar, R. Keskin, F. Erduvan: Fibonacci or Lucas numbers which are products of two repdigits in base $b$. Bull. Braz. Math. Soc. (N.S.) 52 (2021), 1025-1040. DOI 10.1007/s00574-021-00243-y | MR 4325893 | Zbl 1484.11063
[25] D. A. Wolfram: Solving generalized Fibonacci recurrences. Fibonacci Q. 36 (1998), 129-145. MR 1622060 | Zbl 0911.11014
Affiliations: Safia Seffah (corresponding author), University of Science and Technology Houari Boumediene, Faculty of Mathematics, Department of Algebra and Number Theory, Arithmetic, Coding, Combinatorics and Formal Calculus Laboratory, BP 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria, e-mail: safiaseffah58@gmail.com, safia.seffah@usthb.dz; Salah Eddine Rihane, National Higher School of Mathematics, P.O.Box 75, Mahelma 16093, Sidi Abdellah, Algiers, Algeria, e-mail: salahrihane@hotmail.fr, salaheddine.rihane@nhsm.edu.dz; Alain Togbé, Department of Mathematics and Statistics, Purdue University Northwest, 2200 169th Street Hammond, IN 46323, USA and Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany, e-mail: atogbe@pnw.edu