Mathematica Bohemica, first online, pp. 1-4


On some diophantine equations involving factorials

Maciej Gnatowski

Received April 2, 2025.   Published online June 27, 2025.

Abstract:  We study the Diophantine equations $(n!)^k - n^k = (k!)^n - k^n$ and $(n!)^k + n^k = (k!)^n + k^n$, where $k$ and $n$ are positive integers. According to H. Arzel, F. Luca (2017), only the first equation has nontrivial solutions. It is proved also that ${(n!)^k - n^k > (k!)^n - k^n}$ for $n > k \geqslant3$. In the paper we prove that the stronger inequality $(n!)^k - n^k(n-1)^k > (k!)^n - k^n$ holds. We propose also an alternative proof of the results of H. Arzel, F. Luca (2017).
Keywords:  Diophantine equations; factorial
Classification MSC:  11D61

PDF available at:  Institute of Mathematics CAS

References:
[1] H. Arzel, F. Luca: Diophantine equations involving factorials. Math. Bohem. 142 (2017), 181-184. DOI 10.21136/MB.2016.0045-15 | MR 3660174 | Zbl 1424.11080

Affiliations:   Maciej Gnatowski, Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A Street, 15-351 Białystok, Poland, e-mail: maciejgnatowski00@gmail.com


 
PDF available at: