Mathematica Bohemica, first online, pp. 1-24


On module classes of generalized semiperfect modules

Esra Öztürk Sözen, Figen Eryilmaz, Burcu Nişanci Türkmen

Received May 17, 2024.   Published online March 10, 2025.

Abstract:  We introduce Rad-cc-supplemented module which generalizes the general concept of co-coatomically-supplemented modules; a module $W$ is Rad-cc-supplemented if each co-coatomic submodule of $W$ has a Rad-supplement in $W$. In Section 2, we present various properties of these modules. In Section 3, we examine the characterization of modules over commutative domains. In Section 4, we explore the concept of $øplus$-Rad-cc-supplemented modules, which generalizes a generalized notion of $øplus$-co-coatomically-supplemented modules in R. Alizade, S. Güngör (2018). A module $W$ is $øplus$-Rad-cc-supplemented if each co-coatomic $A\leq W$ is of a Rad-supplement which is a direct summand of $W$. In the concluding section of this paper, we investigate into its characteristics by introducing Rad-cc-semiperfect modules.
Keywords:  co-coatomic submodules; Rad-cc-supplemented modules; totally Rad-cc-supplemented modules
Classification MSC:  16D10, 16D99

PDF available at:  Institute of Mathematics CAS

References:
[1] R. Alizade, G. Bilhan, P. F. Smith: Modules whose maximal submodules have supplements. Commun. Algebra 29 (2001), 2389-2405. DOI 10.1081/AGB-100002396 | MR 1845118 | Zbl 0989.16001
[2] R. Alizade, S. Güngör: Co-coatomically supplemented modules. Ukr. Math. J. 69 (2017), 1007-1018. DOI 10.1007/s11253-017-1411-x | MR 3689283 | Zbl 1417.16004
[3] R. Alizade, S. Güngör: $øplus$-co-coatomically supplemented and co-coatomically semiperfect modules. Hacet. J. Math. Stat. 47 (2018), 1417-1426. DOI 10.15672/hjms.20154413844 | MR 3974519 | Zbl 1488.16019
[4] E. Büyükaşik, C. Lomp: On a recent generalization of semiperfect rings. Bull. Aust. Math. Soc. 78 (2008), 317-325. DOI 10.1017/S0004972708000774 | MR 2466867 | Zbl 1159.16015
[5] E. Büyükaşik, E. Mermut, S. Özdemir: Rad-supplemented modules. Rend. Semin. Mat. Univ. Padova 124 (2010), 157-177. DOI 10.4171/RSMUP/124-10 | MR 2752682 | Zbl 1246.16007
[6] E. Büyükaşik, R. Tribak: On $w$-local modules and Rad-supplemented modules. J. Korean Math. Soc. 51 (2014), 971-985. DOI 10.4134/JKMS.2014.51.5.971 | MR 3254569 | Zbl 1318.16008
[7] H. ÇalişiciE. Türkmen: Generalized $øplus$-supplemented modules. Algebra Discrete Math. 10 (2010), 10-18. MR 2884740 | Zbl 1212.16013
[8] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer: Lifting Modules: Supplements and Projectivity in Module Theory. Frontiers in Mathematics. Birkhäuser, Boston (2006). DOI 10.1007/3-7643-7573-6 | MR 2253001 | Zbl 1102.16001
[9] Ş. Ecevit, M. T. Koşan, R. Tribak: Rad-$øplus$-supplemented modules and cofinitely Rad-$øplus$-supplemented modules. Algebra Colloq. 19 (2012), 637-648. DOI 10.1142/S1005386712000508 | MR 2999271 | Zbl 1288.16006
[10] A. Harmanci, D. Keskin, P. F. Smith: On $øplus$-supplemented modules. Acta Math. Hung. 83 (1999), 161-169. DOI 10.1023/A:1006627906283 | MR 1682909 | Zbl 0933.16008
[11] F. Kasch: Modules and Rings. London Mathematical Society Monographs 17. Academic Press, New York (1982). MR 0667346 | Zbl 0523.16001
[12] D. Keskin, P. F. Smith, W. Xue: Rings whose modules are $øplus$-supplemented. J. Algebra 218 (1999), 470-487. DOI 10.1006/jabr.1998.7830 | MR 1705802 | Zbl 0942.16004
[13] M. T. Koşan: Generalized cofinitely semiperfect modules. Int. Electron. J. Algebra 5 (2009), 58-69. DOI 10.1080/15501320802554588 | MR 2471379 | Zbl 1193.16003
[14] G. O. Michler, O. E. Villamayor: On rings whose simple modules are injective. J. Algebra 25 (1973), 185-201. DOI 10.1016/0021-8693(73)90088-4 | MR 0316505 | Zbl 0258.16023
[15] S. H. Mohamed, B. J. Müller: Continuous and Discrete Modules. London Mathematical Society Lecture Note Series 147. Cambridge University Press, Cambridge (1990). DOI 10.1017/CBO9780511600692 | MR 1084376 | Zbl 0701.16001
[16] B. Nisanci, A. Pancar: On generalization of $øplus$-cofinitely supplemented modules. Ukr. Math. J. 62 (2010), 203-209. DOI 10.1007/s11253-010-0344-4 | MR 2888590 | Zbl 1209.16006
[17] P. F. Smith: Finitely generated supplemented modules are amply supplemented. Arab. J. Sci. Eng., Sect. C, Theme Issues 25 (2000), 69-79. MR 1829220 | Zbl 1271.16007
[18] E. Türkmen, A. Pancar: On cofinitely Rad-supplemented modules. Int. J. Pure Appl. Math. 53 (2009), 153-162. MR 2531535 | Zbl 1189.16003
[19] E. Türkmen, A. Pancar: Characterizations of Rad-supplemented modules. Miskolc Math. Notes 13 (2012), 569-580. DOI 10.18514/MMN.2012.397 | MR 3002652 | Zbl 1274.13037
[20] R. B. Warfield, Jr.: Decomposability of finitely presented modules. Proc. Am. Math. Soc. 25 (1970), 167-172. DOI 10.1090/S0002-9939-1970-0254030-4 | MR 0254030 | Zbl 0204.05902
[21] R. Wisbauer: Foundations of Module and Ring Theory: A Handbook for Study and Research. Algebra, Logic and Applications 3. Gordon and Breach Science Publishers, Philadelphia (1991). DOI 10.1201/9780203755532 | MR 1144522 | Zbl 0746.16001
[22] W. Xue: Characterization of semiperfect and perfect rings. Publ. Mat., Barc. 40 (1996), 115-125. DOI 10.5565/PUBLMAT_40196_08 | MR 1397010 | Zbl 0863.16014
[23] H. Zöschinger: Komplementierte Moduln über Dedekindringen. J. Algebra 29 (1974), 42-56. (In German.) DOI 10.1016/0021-8693(74)90109-4 | MR 0340347 | Zbl 0277.13008
[24] H. Zöschinger: Koatomare Moduln. Math. Z. 170 (1980), 221-232. (In German.) DOI 10.1007/BF01214862 | MR 0564202 | Zbl 0411.13009

Affiliations:   Esra Öztürk Sözen, Sinop University, Department of Mathematics, 57000 Sinop, Turkey, e-mail: esozen@sinop.edu.tr; Figen Eryilmaz, Ondokuz Mayis University, 55270 Atakum/Samsun, Turkey, e-mail: fyuzbasi@omu.edu.tr; Burcu Nişanci Türkmen (corresponding author), Amasya University, Department of Mathematics, 05100 Amasya, Turkey, e-mail: burcu.turkmen@amasya.edu.tr


 
PDF available at: