Mathematica Bohemica, first online, pp. 1-21


Sparse sets in triangle-free graphs

Tınaz Ekim, Burak Nur Erdem, John Gimbel

Received July 9, 2024.   Published online June 10, 2025.

Abstract:  A set of vertices is $k$-sparse if it induces a graph with a maximum degree of at most $k$. In this missive, we consider the order of the largest $k$-sparse set in a triangle-free graph of fixed order. We show, for example, that every triangle-free graph of order 11 contains a 1-sparse 5-set; every triangle-free graph of order 13 contains a 2-sparse 7-set; and every triangle-free graph of order 8 contains a 3-sparse 6-set. Further, these are all best possible. For fixed $k$, we consider the growth rate of the largest $k$-sparse set of a triangle-free graph of order $n$. Also, we consider Ramsey numbers of the following type. Given $i$, what is the smallest $n$ having the property that all triangle-free graphs of order $n$ contain a 4-cycle or a $k$-sparse set of order $i$. We use both direct proof techniques and an efficient graph enumeration algorithm to obtain several values for defective Ramsey numbers and a parameter related to largest sparse sets in triangle-free graphs, along with their extremal graphs.
Keywords:  defective Ramsey number; $k$-dense; $k$-sparse; $k$-dependent; extremal graph
Classification MSC:  05C30, 05C35, 05C55

PDF available at:  Institute of Mathematics CAS

References:
[1] M. Ajtai, J. Komlós, E. Szemerédi: A note on Ramsey numbers. J. Comb. Theory, Ser. A 29 (1980), 354-360. DOI 10.1016/0097-3165(80)90030-8 | MR 0600598 | Zbl 0455.05045
[2] A. Akdemir, T. Ekim: Advances on defective parameters in graphs. Discrete Optim. 16 (2015), 62-69. DOI 10.1016/j.disopt.2015.01.002 | MR 3327669 | Zbl 1387.05077
[3] R. Belmonte, P. Heggernes, P. van't Hof, A. Rafiey, R. Saei: Graph classes and Ramsey numbers. Discrete Appl. Math. 173 (2014), 16-27. DOI 10.1016/j.dam.2014.03.016 | MR 3202286 | Zbl 1298.05220
[4] R. Belmonte, M. Lampis, V. Mitsou: Defective coloring on classes of perfect graphs. Graph-Theoretic Concepts in Computer Science. Lecture Notes in Computer Science 10520. Springer, Cham (2017), 113-126. DOI 10.1007/978-3-319-68705-6_9 | MR 3746149 | Zbl 1483.05172
[5] G. Chappell, J. Gimbel: On defective Ramsey numbers. Available at https://www.cs.uaf.edu/~chappell/papers/defram/defram.pdf.
[6] E. J. Cockayne, C. M. Mynhardt: On 1-dependent Ramsey numbers for graphs. Discuss. Math., Graph Theory 19 (1999), 93-110. DOI 10.7151/dmgt.1088 | MR 1704453 | Zbl 0932.05061
[7] Y. E. Demirci, T. Ekim, J. Gimbel, M. A. Yıldız: Exact values of defective Ramsey numbers in graph classes. Discrete Optim. 42 (2021), Article ID 100673, 26 pages. DOI 10.1016/j.disopt.2021.100673 | MR 4337783 | Zbl 1506.05134
[8] Y. E. Demirci, T. Ekim, M. A. Yıldız: Defective Ramsey numbers and defective cocolorings in some subclasses of perfect graphs. Graphs Comb. 39 (2023), Article ID 18, 23 pages. DOI 10.1007/s00373-023-02612-4 | MR 4544255 | Zbl 1509.05125
[9] T. Ekim, J. Gimbel: Some defective parameters in graphs. Graphs Comb. 29 (2013), 213-224. DOI 10.1007/s00373-011-1111-5 | MR 3027597 | Zbl 1263.05028
[10] T. Ekim, J. Gimbel, O. Şeker: Small 1-defective Ramsey numbers in perfect graphs. Discrete Optim. 34 (2019), Article ID 100548, 25 pages. DOI 10.1016/j.disopt.2019.06.001 | MR 4028725 | Zbl 1506.05135
[11] B. N. Erdem: Sparse sets in triangle-free graphs. Available at https://github.com/buraknurerdem/sparse-sets-in-triangle-free-graphs (2024).
[12] K. Fraughnaugh Jones: Independence in graphs with maximum degree four. J. Comb. Theory, Ser. B 37 (1984), 254-269. DOI 10.1016/0095-8956(84)90058-3 | MR 0769368 | Zbl 0547.05057
[13] K. L. Fraughnaugh, S. C. Locke: Lower bounds on size and independence in $K_4$-free graphs. J. Graph Theory 26 (1997), 61-71. DOI 10.1002/(SICI)1097-0118(199710)26:2<61::AID-JGT1>3.0.CO;2-D | MR 1469353 | Zbl 0883.05104
[14] J. H. Kim: The Ramsey number $R(3,t)$ has order of magnitude $t^2/\log t$. Random Struct. Algorithms 7 (1995), 173-207. DOI 10.1002/rsa.3240070302 | MR 1369063 | Zbl 0832.05084
[15] L. Lovász: On decomposition of graphs. Stud. Sci. Math. Hung. 1 (1966), 237-238. MR 0202630 | Zbl 0151.33401
[16] M. M. Matthews, D. P. Sumner: Longest paths and cycles in $K_{1,3}$-free graphs. J. Graph Theory 9 (1985), 269-277. DOI 10.1002/jgt.3190090208 | MR 0797514 | Zbl 0591.05041
[17] B. D. McKay, A. Piperno: Practical graph isomorphism. II. J. Symb. Comput. 60 (2014), 94-112. DOI 10.1016/j.jsc.2013.09.003 | MR 3131381 | Zbl 1394.05079
[18] S. Poljak: A note on stable sets and colorings of graphs. Commentat. Math. Univ. Carol. 15 (1974), 307-309. MR 0351881 | Zbl 0284.05105
[19] W. Staton: Some Ramsey-type numbers and the independence ratio. Trans. Am. Math. Soc. 256 (1979), 353-370. DOI 10.1090/S0002-9947-1979-0546922-6 | MR 0546922 | Zbl 0428.05028
[20] R. Steinberg, C. A. Tovey: Planar Ramsey numbers. J. Comb. Theory, Ser. B 59 (1993), 288-296. DOI 10.1006/jctb.1993.1070 | MR 1244935 | Zbl 0794.05091
[21] P. Turán: On an extremal problem in graph theory. Mat. Fiz. Lapok 48 (1941), 436-452. (In Hungarian.) MR 0018405 | Zbl 0026.26903

Affiliations:   Tınaz Ekim (corresponding author), Burak Nur Erdem, Department of Industrial Engineering, Boğaziçi University, 34342, Bebek, Istanbul, Turkey, e-mail: tinaz.ekim@bogazici.edu.tr, burak.erdem@bogazici.edu.tr; John Gimbel, Mathematics and Statistics, University of Alaska, 1731 South Chandalar Dr., Fairbanks, AK 99775-6660, USA, e-mail: jggimbel@alaska.edu


 
PDF available at: